Abstract

Vegetable oil-in-water emulsions are common cold rolling lubricants. However, maintaining the required dispersion for polar oil droplets for consistent lubrication and proper surface self-cleaning after rolling remains a practical challenge. In this study, titanium silicate TiO2–SiO2 nanoparticle (NP)-stabilized soybean oil emulsions are produced and NPs functions as dispersant, lubrication enhancer, and detergent agent to clean up oil residue are explored. Cold rolling of SS316 strips reveals a threshold of NPs wt%, at which stably dispersed oil droplets improve tribology and lower the rolling parameters relative to without or at high wt% of NPs. Cleaner as-rolled strips are also obtained with NPs. Favorable results are attributed to the formation of NP-coating layers on oil droplets which enhances dispersion, optimizes plate-out while keeping adequate wetting, and provides a three-body abrasive rolling as opposed to two-body adhesion without NPs. A model of sliding–rolling lubrication in cold rolling is also discussed.

References

1.
Azushima
,
A.
,
Inagaki
,
S.
, and
Ohta
,
H.
,
2011
, “
Plating Out Oil Film Thickness on Roll and Workpiece During Cold Rolling With O/W Emulsion
,”
Tribol. Trans.
,
54
(
2
), pp.
275
281
.
2.
Whetzel
,
J. C.
, and
Rodman
,
S.
,
1959
, “
Improved Lubrication in Cold Strip Rolling
,”
IronSteel Eng.
,
36
(
1
), pp.
123
132
.
3.
Ratoi-Salagean
,
M.
,
Spikes
,
H. A.
, and
Rieffe
,
H.
,
1997
, “
Optimizing Film Formation by O/W Emulsions
,”
Tribol. Trans.
,
40
(
4
), pp.
569
578
.
4.
Boyde
,
S.
,
2002
, “
Green Lubricants. Environmental Benefits and Impacts of Lubrication
,”
Green Chem.
,
4
(
4
), pp.
293
307
.
5.
Pantoja
,
S. S.
,
Conceição
,
L. R. V. d.
,
Costa
,
C. E. F. d.
,
Zamian
,
J. R.
, and
Filho
,
G. N. d. R.
,
2013
, “
Oxidative Stability of Biodiesels Produced From Vegetable Oils Having Different Degrees of Unsaturation
,”
Energy Convers. Manage.
,
74
(
1
), pp.
293
298
.
6.
Kamogawa
,
K.
,
Akatsuka
,
H.
,
Matsumoto
,
M.
,
Yokoyama
,
S.
,
Sakai
,
T.
,
Sakai
,
H.
, and
Abe
,
M.
,
2001
, “
Surfactant-Free O/W Emulsion Formation of Oleic Acid and Its Esters With Ultrasonic Dispersion
,”
Colloids Surf. A
,
180
(
1–2
), pp.
41
53
.
7.
Allende
,
D.
,
Cambiella
,
A.
,
Benito
,
J. M.
,
Pazos
,
C.
, and
Coca
,
J.
,
2008
, “
Destabilization-Enhanced Centrifugation of Metalworking Oil-in-Water Emulsions: Effect of Demulsifying Agents
,”
Chem. Eng. Technol.
,
31
(
7
), pp.
1007
1014
.
8.
Allsopp
,
D. N.
,
Trezona
,
R. I.
, and
Hutchings
,
I. M.
,
1998
, “
The Effects of Ball Surface Condition in the Micro-Scale Abrasive Wear Test
,”
Tribol. Lett.
,
5
(
4
), pp.
259
264
.
9.
Trezona
,
R. I.
,
Allsopp
,
D. N.
, and
Hutchings
,
I. M.
,
1999
, “
Transitions Between Two-Body and Three-Body Abrasive Wear: Influence of Test Conditions in the Microscale Abrasive Wear Test
,”
Wear
,
225–229
(
1
), pp.
205
214
.
10.
Yan
,
J.
,
Zeng
,
X.
,
Ren
,
T.
, and
Heide
,
E. v. d.
,
2014
, “
Boundary Lubrication of Stainless Steel and CoCrMo Alloy Based on Phosphorous and Boron Compounds in Oil-in-Water Emulsion
,”
Appl. Surf. Sci.
,
315
(
1
), pp.
415
424
.
11.
Sharma
,
A. K.
,
Tiwari
,
A. K.
,
Singh
,
R. K.
, and
Dixit
,
A. R.
,
2016
, “
Tribological Investigation of TiO2 Nanoparticle Based Cutting Fluid in Machining Under Minimum Quantity Lubrication (MQL)
,”
Mater. Today: Proc.
,
3
(
6
), pp.
2155
2162
.
12.
Sharma
,
A. K.
,
Singh
,
R. K.
,
Dixit
,
A. R.
, and
Tiwari
,
A. K.
,
2017
, “
Novel Uses of Alumina-MoS2 Hybrid Nanoparticle Enriched Cutting Fluid in Hard Turning of AISI 304 Steel
,”
J. Manuf. Process.
,
30
(
1
), pp.
467
482
.
13.
Dickinson
,
E.
,
2010
, “
Food Emulsions and Foams: Stabilization by Particles
,”
Curr. Opin. Colloid Interface Sci.
,
15
(
1–2
), pp.
40
49
.
14.
Chevalier
,
Y.
, and
Bolzinger
,
M.-A.
,
2013
, “
Emulsions Stabilized With Solid Nanoparticles: Pickering Emulsions
,”
Colloids Surf. A
,
439
(
1
), pp.
23
34
.
15.
Ridel
,
L.
,
Bolzinger
,
A.
,
Delepine
,
N. G.
,
Dugas
,
P. Y.
, and
Chevalier
,
Y.
,
2016
, “
Pickering Emulsions Stabilized by Charged Nanoparticles
,”
Soft Matter
,
12
(
36
), pp.
7564
7576
.
16.
Tambe
,
D. E.
, and
Sharma
,
M. M.
,
1993
, “
Factors Controlling the Stability of Colloid-Stabilized Emulsions: I. An Experimental Investigation
,”
J. Colloid Interface Sci.
,
157
(
1
), pp.
244
253
.
17.
Binks
,
B. P.
, and
Lumsdon
,
S. O.
,
1999
, “
Stability of Oil-in-Water Emulsions Stabilised by Silica Particles
,”
Phys. Chem. Chem. Phys.
,
1
(
12
), pp.
3007
3016
.
18.
Binks
,
B. P.
, and
Lumsdon
,
S. O.
,
2000
, “
Catastrophic Phase Inversion of Water-in-Oil Emulsions Stabilized by Hydrophobic Silica
,”
Langmuir
,
16
(
6
), pp.
2539
2547
.
19.
Binks
,
B. P.
, and
Lumsdon
,
S. O.
,
2000
, “
Influence of Particle Wettability on Type and Stability of Surfactant-Free Emulsions
,”
Langmuir
,
16
(
23
), pp.
8622
8631
.
20.
Binks
,
B. P.
, and
Lumsdon
,
S. O.
,
2001
, “
Pickering Emulsions Stabilized by Monodisperse Latex Particles: Effects of Particle Size
,”
Langmuir
,
17
(
15
), pp.
4540
4547
.
21.
Binks
,
B. P.
,
2002
, “
Particles as Surfactants—Similarities and Differences
,”
Curr. Opin. Colloid Interface Sci.
,
7
(
1–2
), pp.
21
41
.
22.
Aveyard
,
R.
,
Binks
,
B. P.
, and
Clint
,
J.
,
2003
, “
Emulsions Stabilised Solely by Colloidal Particles
,”
Adv. Colloid Interface Sci.
,
100–102
(
1
), pp.
503
546
.
23.
Taheri
,
R.
,
Kosasih
,
B.
,
Zhu
,
H.
, and
Tieu
,
A. K.
,
2018
, “
Dispersion Stability and Lubrication Performance Correlation of Vegetable Oil-in-Water Emulsions With Nanoparticle-Shielded Oil Droplets
,”
Lubricants
,
6
(
2
), p.
55
.
24.
Taheri
,
R.
,
Kosasih
,
B.
,
Zhu
,
H.
, and
Tieu
,
A. K.
,
2018
, “
Dual Effects of TiSiO4 Composite Nanoparticles on Dispersion Stability and Lubrication Performance of Vegetable Oil-in-Water Emulsions
,”
Lubr. Sci.
,
31
(
1–2
), pp.
21
39
.
25.
Louaisil
,
K.
,
Dubar
,
M.
,
Deltombe
,
R.
,
Dubois
,
A.
, and
Dubar
,
L.
,
2009
, “
Analysis of Interface Temperature, Forward Slip and Lubricant Influence on Friction and Wear in Cold Rolling
,”
Wear
,
266
(
1
), pp.
119
128
.
26.
Shirizly
,
A.
, and
Lenard
,
J. G.
,
2000
, “
Emulsions Versus Neat Oils in the Cold Rolling of Carbon Steel Strips
,”
ASME J. Tribol.
,
122
(
3
), pp.
550
556
.
27.
Deltombe
,
R.
,
Dubar
,
M.
,
Dubois
,
A.
, and
Dubar
,
L.
,
2003
, “
A New Methodology to Analyse Iron Fines During Steel Cold Rolling Processes
,”
Wear
,
254
(
3
), pp.
211
221
.
28.
Lugt
,
P. M.
,
Wemecamp
,
A. W.
,
Napel
,
W. E. t.
,
Liempt
,
P. v.
, and
Otten
,
J. B.
,
1993
, “
Lubrication in Cold Rolling: Elasto-Plasto-Hydrodynamic Lubrication of Smooth Surfaces
,”
Wear
,
166
(
2
), pp.
203
214
.
29.
Gonçalves
,
J. L.
,
Mello
,
J. D. B. d.
, and
Costa
,
H. L.
,
2019
, “
Wear in Cold Rolling Milling Rolls: A Methodological Approach
,”
Wear
,
426–427
(
1
), pp.
1523
1535
.
30.
Hartfield-Wunsch
,
S. E.
,
Cohen
,
D.
,
Sanchez
,
L. R.
, and
Brattstrom
,
L.-E.
,
2011
, “
The Effect of Surface Finish on Aluminum Sheet Friction Behavior
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
818
825
.
31.
Adhvaryu
,
A.
,
Biresaw
,
G.
,
Sharma
,
B.
, and
Erhan
,
S.
,
2006
, “
Friction Behavior of Some Seed Oils: Biobased Lubricant Applications
,”
Ind. Eng. Chem. Res.
,
45
(
10
), pp.
3735
3740
.
32.
Arumugam
,
K.
, and
Sriram
,
G.
,
2013
, “
Preliminary Study of Nano- and Microscale TiO2 Additives on Tribological Behavior of Chemically Modified Rapeseed Oil
,”
Tribol. Trans.
,
56
(
5
), pp.
797
805
.
33.
Abdulsada
,
A. H.
,
Mishjil
,
K. A.
, and
Abd
,
A. N.
,
2018
, “
Effect of Thermal Annealing on Properties of Polycrystalline Titanium Dioxide (TiO2) Thin Film Prepared by Simple Chemical Method
,”
IOP Conf. Ser.: J. Phys.
,
1032
(
1
), p.
012037
.
34.
Rosales
,
A.
, and
Esquivel
,
K.
,
2020
, “
SiO2@TiO2 Composite Synthesis and Its Hydrophobic Applications: A Review
,”
Catalysts
,
10
(
2
), p.
171
.
35.
Dai
,
W.
,
Kheireddin
,
B.
,
Gao
,
H.
, and
Liang
,
H.
,
2016
, “
Roles of Nanoparticles in Oil Lubrication
,”
Tribol. Int.
,
102
(
1
), pp.
88
98
.
36.
Riazian
,
M.
,
Montazeri
,
N.
, and
Biazar
,
E.
,
2011
, “
Nano Structural Properties of TiO2–SiO2
,”
Orient. J. Chem.
,
27
(
3
), pp.
903
910
. http://www.orientjchem.org/?p=11735
37.
Wei
,
D.
,
Dave
,
R.
, and
Pfeffer
,
R.
,
2002
, “
Mixing and Characterization of Nanosized Powders: An Assessment of Different Techniques
,”
J. Nanopart. Res.
,
4
(
1/2
), pp.
21
41
.
38.
Musić
,
S.
,
Filipović-Vinceković
,
N.
, and
Sekovanić
,
L.
,
2011
, “
Precipitation of Amorphous SiO2 Particles and Their Properties
,”
Braz. J. Chem. Eng.
,
28
(
1
), pp.
89
94
.
39.
Machida
,
M.
,
Norimoto
,
K.
,
Watanabe
,
T.
,
Hashimoto
,
K.
, and
Fujishima
,
A.
,
1999
, “
The Effect of SiO2 Addition in Super-Hydrophilic Property of TiO2 Photocatalyst
,”
J. Mater. Sci.
,
34
(
11
), pp.
2569
2574
.
40.
Forrest
,
E.
,
Schulze
,
R.
,
Liu
,
C.
, and
Dombrowski
,
D.
,
2015
, “
Influence of Surface Contamination on the Wettability of Heat Transfer Surfaces
,”
Int. J. Heat Mass Transfer
,
91
(
c
), pp.
311
317
.
41.
BTG
,
2017
,
Correlating Water Contact Angle With Water Break Measurements as an Indicator of Surface Energy
,
BTG Labs
,
Cincinnati, OH
.
42.
Fujita
,
N.
, and
Kimura
,
Y.
,
2012
, “
Influence of Plate-Out Oil Film on Lubrication Characteristics in Cold Rolling
,”
ISIJ Int.
,
52
(
5
), pp.
850
857
.
43.
Orowan
,
E.
,
1943
, “
The Calculation of Roll Pressure in Hot and Cold Flat Rolling
,”
Proc. Inst. Mech. Eng.
,
150
(
1
), pp.
140
167
.
44.
Alexander
,
J. M.
,
Brewer
,
R. C.
, and
Rowe
,
G. W.
,
1987
,
Manufacturing Technology: Engineering Processes
,
Ellis Horwood
,
West Sussex
.
45.
Liu
,
Y.
,
2002
,
Friction at Strip-Roll Interface in Cold Rolling
,
University of Wollongong
,
Wollongong, Australia
.
46.
Sun
,
W.
,
Tieu
,
K.
,
Li
,
H.
,
Jiang
,
Z.
,
Wang
,
G.
, and
Liu
,
X.
,
2005
, “Friction in the Roll Bite Under Various Hot Rolling Conditions,”
The 3rd Symposium on Advanced Structural Steels and New Rolling Technologie
,
D.
Hua
,
L.
Zhengyu
, and
D.
Hongshuang
, eds.,
Northeastern University
,
Shenyang
, pp.
110
120
.
47.
Binks
,
B. P.
, and
Whitby
,
C. P.
,
2005
, “
Nanoparticle Silica-Stabilised Oil-in-Water Emulsions: Improving Emulsion Stability
,”
Colloids Surf. A
,
25
(
1–3
), pp.
105
115
.
48.
Simovic
,
S.
, and
Prestidge
,
C. A.
,
2003
, “
Adsorption of Hydrophobic Silica Nanoparticles at the PDMS Droplet-Water Interface
,”
Langmuir
,
19
(
20
), pp.
8364
8370
.
49.
Simovic
,
S.
, and
Prestidge
,
C.
,
2003
, “
Hydrophilic Silica Nanoparticles at PDMS Droplet-Water Interface
,”
Langmuir
,
19
(
9
), pp.
3785
3792
.
50.
Frelichowska
,
J.
,
Bolzinger
,
M.-A.
, and
Chevalier
,
Y.
,
2010
, “
Effects of Solid Particle Content on Properties of O/W Pickering Emulsions
,”
J. Colloid Interface Sci.
,
351
(
2
), pp.
348
356
.
51.
Roberts
,
G. P.
,
Barnes
,
H. A.
, and
Mackie
,
C.
,
2001
, “
Using the Microsoft Excel ‘Solver’ Tool to Perform Non-Linear Curve Fitting, Using a Range of Non-Newtonian Flow Curves as Examples
,”
Appl. Rheol.
,
11
(
5
), pp.
271
276
.
52.
Quintana
,
S. E.
,
Franco
,
J. M.
, and
Garcia-Zapateiro
,
L.
,
2015
, “
Physico-Chemical and Bromatological Characteristics of Arenca and Rheological Properties of Oil-in-Water Emulsions Containing Isolated Protein
,”
Food Sci. Technol.
,
39
(
6
), pp.
634
641
.
53.
Brewer
,
D. R.
,
Francd
,
J. M.
, and
Garcia-Zapateird
,
L. A.
,
2016
, “
Rheological Properties of Oil-in-Water Emulsions Prepared With Oil and Protein Isolates From Sesame (Sesamum indicum)
,”
Food Sci. Technol.
,
36
(
1
), pp.
64
69
.
54.
Forster
,
A. H.
, and
Herrington
,
T. M.
,
1997
, “
Rheology of Siloxane-Stabilized Water in Silicone Emulsions
,”
Int. J. Cosmet. Sci.
,
19
(
4
), pp.
173
191
.
55.
Li
,
Q.
,
Zhang
,
Y.
,
Miao
,
Q.
,
Chen
,
L.
,
Yuan
,
Z.
, and
Liu
,
G.
,
2020
, “
Rheological Properties of Oil–Water Pickering Emulsion Stabilized by Fe3O4 Solid Nanoparticles
,”
Open Phys.
,
18
(
1
), pp.
1188
1200
.
56.
Sefiane
,
K.
,
Skilling
,
J.
, and
MacGillivray
,
J.
,
2008
, “
Contact Line Motion and Dynamic Wetting of Nanofluid Solutions
,”
Adv. Colloid Interface Sci.
,
138
(
2
), pp.
101
120
.
57.
Bonn
,
D.
,
Eggers
,
J.
,
Indekeu
,
J.
,
Meunier
,
J.
, and
Rolley
,
E.
,
2009
, “
Wetting and Spreading
,”
Rev. Mod. Phys.
,
81
(
2
), pp.
739
805
.
58.
Wasan
,
D.
,
Nikolov
,
A.
, and
Kondiparty
,
K.
,
2011
, “
The Wetting and Spreading of Nanofluids on Solids: Role of the Structural Disjoining Pressure
,”
Curr. Opin. Colloid Interface Sci.
,
16
(
4
), pp.
344
349
.
59.
Chaudhuri
,
R. G.
, and
Paria
,
S.
,
2014
, “
The Wettability of PTFE and Glass Surfaces by Nanofluids
,”
J. Colloid Interface Sci.
,
434
(
1
), pp.
141
151
.
60.
Wang
,
W.
,
Hua
,
M.
, and
Wei
,
X.
,
2011
, “
Friction Behavior of SUS304 Metastable Austenitic Stainless Steel Sheet Against DC53 Die Under the Condition of Friction Coupling Plastic Deformation
,”
Wear
,
271
(
7–8
), pp.
1166
1173
.
61.
Ahmed
,
R.
, and
Sutcliffe
,
M. P.
,
2000
, “
Identification of Surface Features on Cold-Rolled Stainless Steel Strip
,”
Wear
,
244
(
1
), pp.
60
70
.
62.
Sutcliffe
,
M. P.
, and
Georgiades
,
F.
,
2002
, “
Characterisation of Pit Geometry in Cold-Rolled Stainless Steel Strip
,”
Wear
,
253
(
9–10
), pp.
963
974
.
63.
Li
,
C.-s.
,
Fu
,
B.
,
Zhu
,
T.
, and
Lib
,
Y.-y.
,
2014
, “
Roughness and Glossiness of SUS430 Stainless Steel in Cold Rolling
,”
Procedia Eng.
,
81
(
1
), pp.
167
172
.
64.
Li
,
C.
,
Zhu
,
T.
,
Fu
,
B.
, and
Li
,
Y.
,
2015
, “
Roughness and Micro Pit Defects on Surface of SUS430 Stainless Steel Strip in Cold Rolling Process
,”
Adv. Mater. Res.
,
4
(
4
), pp.
215
226
.
65.
Labiapari
,
W. d. S.
,
Alcântara
,
C. M. d.
,
Costa
,
H. L.
, and
Mello
,
J. D. B. D.
,
2015
, “
Wear Debris Generation During Cold Rolling of Stainless Steels
,”
J. Mater. Process. Technol.
,
223
(
1
), pp.
164
170
.
66.
Kenmochi
,
K.
,
Yarita
,
I.
,
Abe
,
H.
,
Fukuhara
,
A.
,
Komatu
,
T.
, and
Kaito
,
H.
,
1997
, “
Effect of Micro-Defects on the Surface Brightness of Cold-Rolled Stainless-Steel Strip
,”
J. Mater. Process. Technol.
,
69
(
1–3
), pp.
106
111
.
67.
Bech
,
J. I.
,
Bay
,
N.
, and
Eriksen
,
M.
,
1998
, “
A Study of Mechanisms of Liquid Lubrication in Metal Forming
,”
CIRP Ann.
,
47
(
1
), pp.
221
226
.
You do not currently have access to this content.