Theoretical studies have shown that in severe operating conditions, valve train friction losses are significant and have an adverse effect on fuel efficiency. However, recent studies have shown that existing valve train friction models do not reliably predict friction in boundary and mixed lubrication conditions and are not sensitive to lubricant chemistry. In these conditions, the friction losses depend on the tribological performance of tribofilms formed as a result of surface–lubricant additive interactions. In this study, key tribological parameters were extracted from a direct acting tappet type Ford Zetec SE (Sigma) valve train, and controlled experiments were performed in a block-on-ring tribometer under conditions representative of boundary lubrication in a cam and follower contact. Friction was recorded for the tribofilms formed by molybdenum dithiocarbamate (MoDTC), zinc dialkyldithiophosphate (ZDDP), detergent (calcium sulfonate), and dispersant (polyisobutylene succinimide) additives in an ester-containing synthetic polyalphaolefin (PAO) base oil on AISI E52100 steel components. A multiple linear regression technique was used to obtain a friction model in boundary lubrication from the friction data taken from the block-on-ring tribometer tests. The model was developed empirically as a function of the ZDDP, MoDTC, detergent, and dispersant concentration in the oil and the temperature and sliding speed. The resulting friction model is sensitive to lubricant chemistry in boundary lubrication. The tribofilm friction model showed sensitivity to the ZDDP–MoDTC, MoDTC–dispersant, MoDTC–speed, ZDDP–temperature, detergent–temperature, and detergent–speed interactions. Friction decreases with an increase in the temperature for all ZDDP/MoDTC ratios, and oils containing detergent and dispersant showed high friction due to antagonistic interactions between MoDTC–detergent and MoDTC–dispersant additive combinations.

References

1.
Mufti
,
R.
, 2004, “
Total and Component Friction in a Motored and Fired Engine
,” Ph.D. thesis, School of Mechanical Engineering, University of Leeds, UK.
2.
Roshan
,
R.
,
Priest
,
M.
,
Neville
,
A.
,
Morina
,
A.
,
Xia
,
X.
,
Green
,
J. H.
,
Warrens
,
C. P.
, and
Payne
,
M. J.
, 2009,
“Friction Modelling in Engine Valve Train Considering the Sensitivity to Lubricant Formulation,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
223
(
3
), pp.
413
424
.
3.
Taylor
,
C. M.
, 1993,
Engine Tribology
,
Elsevier
,
Amsterdam
, Chap. VI.
4.
Taylor
,
C. M.
, 1994,
“Fluid Film Lubrication in Automotive Valve Trains,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
208
(
J4
), pp.
221
233
.
5.
Mufti
,
R. A.
, and
Priest
M.
, 2003,
“Experimental and Theoretical Study of Instantaneous Engine Valve Train Friction,”
ASME J. Tribol.
,
125
(
3
), pp.
628
637
.
6.
Roshan
,
R.
,
Priest
,
M.
,
Neville
,
A.
,
Morina
,
A.
,
Xia
,
X.
,
Green
,
J. H.
,
Warrens
,
C. P.
, and
Payne
,
M. J.
, 2008,
“Friction Modelling of Tribofilm Performance in a Bench Tribometer for Automotive Engine Lubricants,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
222
(
3
), pp.
357
367
.
7.
Staron
,
J. T.
, and
Willermet
,
P. A.
, 1983, “
An Analysis of Valve Train Friction in Terms of Lubricant Principles
,”
SAE Papers
, Paper No. 830165.
8.
Ball
,
A. D.
, 1988, “
A Tribological Study of the Design and Performance of Automotive Cams
,” Ph.D. thesis, School of Mechanical Engineering, University of Leeds, UK.
9.
Yang
,
L. S.
, 1992, “
Friction Modelling for Internal Combustion Engines
,” Ph.D. thesis, School of Mechanical Engineering, University of Leeds, UK.
10.
Taylor
,
R. I.
, 1997,
“Engine Friction: The Influence of Lubricant Rheology,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
211
(
3
), pp.
235
246
.
11.
Coy
,
R. C.
, 1998,
“Practical Applications of Lubrication Models in Engines,”
Tribol. Int.
,
31
(
10
), pp.
563
571
.
12.
Sorab
,
J.
,
McCollum
,
C. B.
,
Korcek
,
S.
, and
Schriewer
,
K. W.
, 1998, “
Sequence VIB Engine Test for Evaluation of Fuel Efficiency of Engine Oils. Part II: Stage Selection and Time Factor Determination
,”
SAE Papers
, Paper No. 982624.
13.
Dickenson
,
A. N.
, 2000, “
Engine Friction Modelling Considering Lubricant Tribological Characteristics
,” Ph.D. thesis, School of Mechanical Engineering, University of Leeds, UK.
14.
Green
,
J. H.
,
Priest
,
M.
,
Morina
,
A.
, and
Neville
,
A.
, 2003, “
Approaches to Sensitising Engine Valve Train Friction Models to Lubricant Formulation Characteristics
,”
Proceedings Of the 29th Leeds-Lyon Sy\mposium on Tribology (Tribology Series)
,
D.
Dowson
,
M.
Priest
,
G.
Dalmaz
,
A. A.
Lubrecht
, eds.,
Elsevier
,
Leeds, UK
, Vol.
41
, pp.
35
45
.
15.
Tan
,
Y.
,
Huang
,
W.
, and
Wang
,
X.
, 2004,
“Tribochemistry of ZDDP in Molecular Orbital Calculations,”
Tribol. Int.
,
37
(
6
), pp.
447
450
.
16.
Erdemir
,
A.
,
Li
,
S.
, and
Jin
,
Y.
, 2005,
“Relation of Certain Quantum Chemical Parameters to Lubrication Behavior of Solid Oxides,”
Int. J. Mol. Sci.
,
6
, pp.
203
218
.
17.
Mosey
,
N. J.
,
Muser
,
M. H.
, and
Woo
,
T. K.
, 2005,
“Molecular Mechanisms for the Functionality of Lubricant Additives,”
Science
,
307
(
5715
), pp.
1612
1615
.
18.
Onodera
,
T.
,
Miura
,
R.
,
Suzuki
,
A.
,
Tsuboi
,
H.
,
Hatakeyama
,
N.
,
Endou
,
A.
,
Takaba
,
H.
,
Kubo
,
M.
, and
Miyamoto
,
A.
, 2010,
“Development of a Quantum Chemical Molecular Dynamics Tribochemical Simulator and its Application to Tribochemical Reaction Dynamics of Lubricant Additives,”
Modell. Simul. Mater. Sci. Eng.
,
18
, p.
034009
.
19.
Roshan
,
R.
, 2009, “
Tribological Modelling of Tribofilm Performance for Engine Applications
,” Ph.D. thesis, School of Mechanical Engineering, University of Leeds, UK.
20.
Wilson
,
B.
, 1996,
“Biceri Testing Procedure,”
Ind. Lubr. Tribol.
,
48
(
6
), pp.
6
9
.
21.
Noorman
,
M. T.
,
Assanis
,
D. N.
,
Patterson
,
D. J.
,
Tung
,
S. C.
, and
Tseregounis
,
S. I.
, 2000, “
Overview of Techniques for Measuring Friction Using Bench Tests and Fired Engines
,”
SAE Papers
, Paper No. 2000-01-1780.
22.
Green
,
J. H.
,
Priest
,
M.
,
Morina
,
A.
, and
Neville
,
A.
, 2004, “
Evolution of Tribofilms Under Lubrication Conditions Experienced in Engine Valve Trains
,”
Transient Processes in Tribology: Proceedings of the 30th Leeds-Lyon Symposium on Tribology (Tribology Series)
,
A. A.
Lubrecht
,
G.
Dalmaz
,
D.
Dowson
, and
M.
Priest
, eds.,
Elsevier
,
Amsterdam
,
43
, pp.
97
108
.
23.
Roshan
,
R.
,
Priest
,
M.
,
Neville
,
A.
,
Morina
,
A.
,
Xia
,
X.
,
Green
,
J. H.
,
Warrens
,
C. P.
, and
Payne
,
M. J.
, 2011,
“Subscale Tribofilm Tribological Modelling in Boundary Lubrication Using Multivariate Analysis,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
225
(
2
), pp.
58
71
.
24.
Kadokawa
,
S.
, 1991, “
Cam Follower Device for Valve Driving Mechanism in Engine
,” U.S. Patent No. 5054440.
25.
Mazzamaro
,
G. A.
, 2008, “
ILSAC GF-5 Development—Better Late Than Never
,” R.T. Vanderbilt Company, Inc., Norwalk, CT, http://www.rtvanderbilt.com/ILSAC%20GF-5%20Development.pdfhttp://www.rtvanderbilt.com/ILSAC%20GF-5%20Development.pdf
26.
Canter
,
N.
, 2006, “
Special Report: Additive Challenges in Meeting New Automotive Engine Specifications
,” Tribology &
Lubrication Technology
, September, pp. 10–19.
27.
Errichello
,
R.
, 2004, “
Selecting Oils With High Pressure—Viscosity Coefficient—Increase Bearing Life by More Than Four Times
,” Machinery Lubrication, http://www.machinerylubrication.com/Read/586/viscosity-coefficient-bearinghttp://www.machinerylubrication.com/Read/586/viscosity-coefficient-bearing
28.
Tallian
,
T. E.
, 1978, “
Elastohydrodynamic Effects in Rolling Contact Fatigue
,”
Proceedings of the 5th Leeds-Lyon Symposium on Tribology
,
D.
Dowson
,
C. M.
Taylor
,
M.
Godet
, and
D.
Berthe
, eds.,
Elsevier
,
London
, pp.
253
281
.
29.
Dowson
,
D.
, and
Higginson
,
G. R.
, 1977,
Elastrohydrodynamic Lubrication
(International Series on Materials Science and Technology),
Pergamon
,
Oxford, UK
.
30.
Bryan
,
F. J. M.
, 2004,
Multivariate Statistical Methods: A Primer
, 3rd ed.,
Chapman & Hall/CRC
,
London
.
31.
Jiang
,
B. C.
, and
Shiau
,
M. Y.
, 1990,
“A Systematic Methodology for Determining/Optimizing a Machine Vision System’s Capability,”
Machine Vision Appl.
3
, pp.
169
182
.
32.
Box
,
G. E. P.
, and
Draper
,
N. R.
, 1986,
Empirical Model-Building and Response Surfaces
,
John Wiley & Sons
,
New York
.
33.
Roshan
,
R.
,
Priest
,
M.
,
Neville
,
A.
,
Morina
,
A.
,
Xia
,
X.
,
Green
,
J. H.
,
Warrens
,
C. P.
, and
Payne
,
M. J.
, 2008, “
The Determination of Additive Effects on Tribofilm Friction Performance in Boundary Lubrication Conditions for Automotive Lubricants
,” IMechE: The Mission of Tribology, Research 17,
Event Proceedings, Institution of Mechanical Engineers
,
London, UK
, www.imeche.org/events/s1417www.imeche.org/events/s1417
34.
Montgomery
,
D. C.
, 1991,
Design and Analysis of Experiments
, 3rd ed.,
Chichester/Wiley
,
New York
.
35.
Mitchell
,
P. C. H.
, 1984,
“Oil Soluble Mo-S Compounds as Lubricant Additives,”
Wear
,
100
, pp.
281
-
300
.
36.
Grossiord
,
C.
,
Varlot
,
K.
,
Martin
,
J. M.
,
Mogne
,
L. T.
,
Esnouf
,
C.
, and
Inoues
,
K.
, 1998,
“MoS2 Single Sheet Lubrication by Molybdenum Dithiocarbamate,”
Tribol. Int.
,
31
(
12
), pp.
737
743
.
37.
Graham
,
J.
,
Spikes
,
H.
, and
Korcek
,
S.
, 2001,
“The Friction Reducing Properties of Molybdenum Dialkyldithiocarbamate Additives: Part I—Factors Influencing Friction Reduction,”
Tribol. Trans.
,
44
(
4
), pp.
626
636
.
38.
Morina
,
A.
,
Neville
,
A.
,
Priest
,
M.
, and
Green
,
J. H.
, 2006,
“ZDDP and MoDTC Interactions in Boundary Lubrication—The Effect of Temperature and ZDDP/MoDTC Ratio,”
Tribol. Int.
,
39
, pp.
1545
1557
.
39.
Barros
,
M. I. D.
,
Bouchet
,
J.
,
Raoult
,
I.
,
Mogne
,
T. L.
,
Martin
,
J. M.
,
Kasrai
,
M.
, and
Yamada
,
Y.
, 2003,
“Friction Reduction by Metal Sulphides in Boundary Lubrication Studied by XPS and XANES Analyses,”
Wear
,
254
, pp.
863
870
.
40.
Sorab
,
J.
,
Korcek
,
S.
, and
Bovington
,
C.
, 1998, “
Friction Reduction In Lubricated Components Through Engine Oil Formulation
,”
SAE Papers
, Paper No. 982640.
41.
Martin
,
J. M.
,
Grossiord
,
C.
,
Varlot
,
K.
,
Vacher
,
B.
, and
Igarashi
,
J.
, 2000,
“Synergistic Effects in Binary Systems of Lubricant Additives: A Chemical Hardness Approach,”
Tribol. Lett.
,
8
, pp.
193
201
.
42.
Muraki
,
M.
,
Yanagi
,
Y.
, and
Sagaguchi
,
K.
, 1997,
“Synergetic Effect on Friction Characteristics Under Rolling-Sliding Condition Due to a Combination of Molybdenum Dialkyldithiocarbamate and Zinc Dialkyldithiophosphate,”
Tribol. Int.
,
30
, pp.
69
75
.
43.
Saini
,
M. S.
,
Lockwood
,
F. E.
,
Siniflz
,
T. R.
,
Pridemore
,
D.
, and
Griilke
,
E. A.
, 2001,
“Organomolybdenum Compounds in an Engine Oil Formulation and the Results of Engine Testing,”
Tribotest J.
8(1)
, pp.
27
44
.
44.
Kasrai
,
M.
,
Cutler
,
J. N.
,
Gore
,
K.
,
Canning
,
G.
,
Bancroft
,
G. M.
, and
Tan
,
K. H.
, 1998,
“The Chemistry of Antiwear Films Generated by the Combination of ZDDP and MoDTC Examined by X-ray Absorption Spectroscopy,”
Tribol. Trans.
,
41
(
1
), pp.
69
77
.
45.
Muraki
,
M.
, and
Wada
,
H.
, 2002,
“Influence of the Alkyl Group of Zinc Dialkyldithiophosphate on the Frictional Characteristics of Molybdenum Dialkyldithiocarbamate Under Sliding Conditions,”
Tribol. Int.
,
35
, pp.
857
863
.
46.
Ye
,
J.
,
Kano
,
M.
, and
Yasuda
,
Y.
, 2002,
“Friction Property Study of the Surface of ZDDP and MoDTC Antiwear Additive Films Using AFM/LFM and Force Curve Methods,”
Tribotest J.
,
9(1)
, pp.
13
21
.
47.
Muraki
,
M.
, and
Wada
,
H.
, 1993,
“Frictional Properties of Organo Molybdenum Compounds in Presence of ZnDTP Under Sliding Conditions: I. Frictional Properties of MoDTC and MoDTP,”
Jpn. J. Tribol.
,
38
, pp.
1347
1359
.
48.
Martin
,
J. M.
,
Grossiord
,
C.
,
Mogne
,
T. L.
, and
Igarashi
,
J.
, 2000,
“Transfer Films and Friction Under Boundary Lubrication,”
Wear
,
245
, pp.
107
115
.
49.
Wei
,
D.
,
Song
,
H.
, and
Wang
,
R.
, 1991,
“An Investigation of the Effects of Some Motor Oil Additives on the Friction and Wear Behaviour of Oil-Soluble Organomolybdenum Compounds,”
Lubr. Sci.
,
4
(
1
), pp.
51
72
.
50.
Yin
,
Z.
,
Kasrai
,
M.
,
Bancroft
,
G. M.
,
Fyfe
,
K.
,
Colaianni
,
M. L.
, and
Tan
,
K. H.
, 1997,
“Application of Soft X-Ray Absorption Spectroscopy in Chemical Characterization of Antiwear Films Generated by ZDDP Part II: The Effect of Detergents and Dispersants,”
Wear
,
202
, pp.
192
201
.
51.
Yamamoto
,
Y.
,
Gondo
,
S.
, and
Tanak
,
N.
, 2004,
“Effect of Graphite on Friction and Wear Characteristics of Molybdenum Dithiocarbamate,”
Tribol. Lett.
,
17
(
1
), pp.
55
59
.
You do not currently have access to this content.