Granular flows continue to be a complex problem in nature and industrial sectors where solid particles exhibit solid, liquid, and gaseous behavior, in a manner which is often unpredictable locally or globally. In tribology, they have also been proposed as lubricants because of their liquid-like behavior in sliding contacts and due to their ability to carry loads and accommodate surface velocities. The present work attempts to model a granular Couette flow using a lattice-based cellular automata computational modeling approach. Cellular automata (CA) is a modeling platform for obtaining fast first-order approximations of the properties of many physical systems. The CA framework has the flexibility to employ rule-based mathematics, first-principle physics, or both to rapidly model physical processes, such as granular flows. The model developed in this work incorporates dissipative effects due to friction between particles and between particles and boundaries, in addition to the derivative effects of friction, namely particle spin. This new model also includes a rigorous and physically relevant treatment of boundary–particle interactions. The current work compares this new friction and spin inclusive CA model and the author’s previous frictionless CA model against experimental results for an annular shear cell. The effects of granular collision properties were also examined through parametric studies on particle–particle coefficient of restitution (COR) and coefficient of friction (COF), which is a unique and added capability of the friction inclusive model.
Skip Nav Destination
Article navigation
July 2011
Research Papers
The Inclusion of Friction in Lattice-Based Cellular Automata Modeling of Granular Flows
Martin C. Marinack, Jr.,
Martin C. Marinack, Jr.
Mechanical Engineering Department,
Carnegie Mellon University
, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890
Search for other works by this author on:
C. Fred Higgs, III
C. Fred Higgs, III
Mechanical Engineering Department,
Carnegie Mellon University
, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890
Search for other works by this author on:
Martin C. Marinack, Jr.
Mechanical Engineering Department,
Carnegie Mellon University
, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890
C. Fred Higgs, III
Mechanical Engineering Department,
Carnegie Mellon University
, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890J. Tribol. Jul 2011, 133(3): 031302 (13 pages)
Published Online: July 25, 2011
Article history
Received:
October 8, 2010
Revised:
April 1, 2011
Online:
July 25, 2011
Published:
July 25, 2011
Citation
Marinack, M. C., Jr., and Higgs, C. F., III (July 25, 2011). "The Inclusion of Friction in Lattice-Based Cellular Automata Modeling of Granular Flows." ASME. J. Tribol. July 2011; 133(3): 031302. https://doi.org/10.1115/1.4004103
Download citation file:
Get Email Alerts
Cited By
Related Articles
Complex Flow Dynamics in Dense Granular Flows—Part II: Simulations
J. Appl. Mech (July,2007)
Modeling and Analysis of Automatic Transmission Engagement Dynamics-Linear Case
J. Dyn. Sys., Meas., Control (June,2006)
A Numerical Study on the Sensitivity of the Discrete Element Method for Hopper Discharge
J. Pressure Vessel Technol (June,2009)
Feedback Control of Braking Deceleration on Railway Vehicle
J. Dyn. Sys., Meas., Control (June,2006)
Related Proceedings Papers
Related Chapters
The Design and Implement of Remote Inclinometer for Power Towers Based on MXA2500G/GSM
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Hydraulic Resistance
Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
Considerations on Data Requirements for Tribological Modeling
Tribological Modeling for Mechanical Designers