It has been widely accepted that the microstructure of bearing materials can significantly affect their rolling contact fatigue (RCF) lives. Hence, microlevel topological features of materials will be of significant importance to RCF investigation. In order to estimate the fatigue lives of bearing elements and account for the effects of topological randomness of the bearing materials, in this work, damage mechanics modeling approach is incorporated into a Voronoi finite element method recently developed by the authors. Contrary to most of the life models existing in the literature for estimating the RCF lives, the current model considers microcrack initiation, coalescence, and propagation stages. The proposed model relates the fatigue life to a damage parameter D, which is a measure of the gradual material degradation under cyclic loading. In this investigation, 40 semi-infinite domains with different microstructural distributions are subjected to a moving Hertzian pressure. Using the fatigue damage model developed, the initiation and total lives of the 40 domains are obtained. Also, the effects of initial material flaws and inhomogeneous material properties (in the form of normal distribution of the elastic modulus) on the fatigue lives are investigated. It is observed that the fatigue lives calculated and their Weibull slopes are in good agreement with previous experimental and analytical results. It is noted that introducing inhomogeneous material properties and initial flaws within the domains decreases the fatigue lives and increases their scatters.

1.
Littmann
,
W. E.
, and
Widner
,
R. L.
, 1966, “
Propagation of Contact Fatigue From Surface and Sub-Surface Origins
,”
ASME J. Basic Eng.
0021-9223,
88
, pp.
624
636
.
2.
Littmann
,
W. E.
, 1969, “
The Mechanism of Contact Fatigue
,”
NASA
Special Report No. SP-237.
3.
Voskamp
,
A. P.
,
Osterlund
,
R.
,
Becker
,
P. C.
, and
Vingsbo
,
O.
, 1980, “
Gradual Changes in Residual Stress and Microstructure During Contact Fatigue in Ball Bearings
,”
Met. Technol. (London)
0307-1693,
7
, pp.
14
21
.
4.
Österlund
,
R.
, and
Vingsbo
,
O.
, 1980, “
Phase Changes in Fatigued Ball Bearings
,”
Metall. Trans. A
0360-2133,
11
, pp.
701
707
.
5.
Voskamp
,
A. P.
, 1985, “
Material Response to Rolling Contact Loading
,”
ASME J. Tribol.
0742-4787,
107
, pp.
359
366
.
6.
Voskamp
,
A. P.
, 1998, “
Fatigue and Material Response in Rolling Contact
,”
Bearing Steels: Into the 20th Century
,”
ASTM
,
Philadelphia, PA
, Vol.
1328
, pp.
152
166
.
7.
Voskamp
,
A. P.
, and
Mittemeijer
,
E. J.
, 1997, “
The Effect of the Changing Microstructure on the Fatigue Behavior During Cyclic Rolling Contact Loading
,”
Z. Metallkd.
0044-3093,
88
, pp.
310
319
.
8.
Lou
,
B.
,
Han
,
L.
,
Lu
,
Z.
,
Liu
,
S.
, and
Shen
,
F.
, 1990, “
The Rolling Contact Fatigue Behaviors in Carburized and Hardened Steel
,”
Fatigue 90: Proceedings of the Fourth International Conference on Fatigue and Fatigue Thresholds
,
H.
Kitagawa
and
T.
Tanaka
, eds., Honolulu, HI, pp.
627
632
.
9.
Furuma
,
K.
,
Shirota
,
S.
, and
Hirakawa
,
K.
, 1975, “
The Subsurface-Initiated and the Surface-Initiated Rolling Fatigue Life of Bearing Steels
,”
Proceedings of the JSLE-ASLE International Conference on Lubrication
, Tokyo, Japan, pp.
475
483
.
10.
Bower
,
A. F.
, 1988, “
The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks
,”
ASME J. Tribol.
0742-4787,
110
, pp.
704
711
.
11.
Nélias
,
D.
,
Dumont
,
M. L.
,
Champiot
,
F.
,
Vincent
,
A.
,
Girodin
,
D.
,
Fougeres
,
R.
, and
Flamand
,
L.
, 1999, “
Role of Inclusions, Surface Roughness and Operating Conditions on Rolling Contact Fatigue
,”
ASME J. Tribol.
0742-4787,
121
(
2
), pp.
240
251
.
12.
Miller
,
K. J.
, 1999, “
A Historical Perspective of the Important Parameters of Metal Fatigue; and Problems for the Next Century
,”
Fatigue ‘99: Proceedings of the Seventh International Fatigue Congress
, Beijing, China, pp.
15
39
.
13.
Ito
,
O.
, and
Fuller
,
E. R.
, 1993, “
Computer Modeling of Anisotropic Grain Microstructure in Two Dimensions
,”
Acta Metall. Mater.
0956-7151,
41
, pp.
191
198
.
14.
Zavattieri
,
P. D.
, 2000, “
Computational Modeling for Bridging Size Scales in the Failure of Solids
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
15.
Zavattieri
,
P. D.
, and
Espinosa
,
H. D.
, 2001, “
Grain Level Analysis of Crack Initiation and Propagation in Brittle Materials
,”
Acta Mater.
1359-6454,
49
, pp.
4291
4311
.
16.
Jalalahmadi
,
B.
, and
Sadeghi
,
F.
, 2009, “
A Voronoi Finite Element Study of Fatigue Life Scatter in Rolling Contacts
,”
ASME J. Trib.
,
131
(
2
), p.
022203
.
17.
Lundberg
,
G.
, and
Palmgren
,
A.
, 1947, “
Dynamic Capacity of Rolling Bearings
,”
Acta Polytech. Scand., Mech. Eng. Ser.
0001-687X,
1
(
3
), pp.
7
53
.
18.
Chiu
,
Y. P.
,
Tallian
,
T. E.
, and
McCool
,
J. I.
, 1971, “
An Engineering Model of Spalling Fatigue Failure in Rolling Contact—The Subsurface Model
,”
Wear
0043-1648,
17
, pp.
433
446
.
19.
Ioannides
,
E.
, and
Harris
,
T. A.
, 1985, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
0742-4787,
107
(
3
), pp.
367
378
.
20.
Schlicht
,
H.
,
Schreiber
,
E.
, and
Zwirlein
,
O.
, 1986, “
Fatigue and Failure Mechanism of Bearings
,”
Proceedings of International Conference on Fatigue of Engineering Materials and Structures
,
Institution of Mechanical Engineering, Publications Limited
,
London
, pp.
85
91
.
21.
Tallian
,
T. E.
, 1992, “
Simplified Contact Fatigue Life Prediction Model—Part I: Review of Published Models
,”
ASME J. Tribol.
0742-4787,
114
, pp.
207
213
.
22.
Tallian
,
T. E.
, 1992, “
Simplified Contact Fatigue Life Prediction Model—Part II: New Model
,”
ASME J. Tribol.
0742-4787,
114
, pp.
214
222
.
23.
Zaretsky
,
E. V.
, 1994, “
Design for Life, Plan for Death
,”
Mach. Des.
0024-9114,
66
(
15
), pp.
55
59
.
24.
Keer
,
L. M.
, and
Bryant
,
M. D.
, 1983, “
A Pitting Model for Rolling Contact Fatigue
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
198
205
.
25.
Bhargava
,
V.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
, 1990, “
Rolling Contact Deformation, Etching Effects and Failure of High Strength Steels
,”
Metall. Trans. A
0360-2133,
21
, pp.
1921
1931
.
26.
Zhou
,
R. S.
, 1993, “
Surface Topography and Fatigue Life of Rolling Contact Bearings
,”
Tribol. Trans.
1040-2004,
36
, pp.
329
340
.
27.
Cheng
,
W.
, and
Cheng
,
H. S.
, 1995, “
Semi-Analytical Modeling of Crack Initiation Dominant Contact Fatigue for Roller Bearings
,”
Proceedings of the 1995 Joint ASME/STLE Tribology Conference
, Orlando, FL.
28.
Lormand
,
G.
,
Meynaud
,
G.
,
Vincent
,
A.
,
Baudry
,
G.
,
Girodin
,
D.
, and
Dudragne
,
G.
, 1998, “
From Cleanliness to Rolling Fatigue Life of Bearings—A New Approach
,”
Bearing Steels: Into the 21st Century
,
J.
Hoo
and
W.
Green
, eds.,
ASTM
,
Philadelphia, PA
, Vol.
1327
, pp.
55
69
.
29.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1999, “
A Model for Rolling Contact Failure
,”
Wear
0043-1648,
224
, pp.
38
49
.
30.
Raje
,
N. N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
, Jr.
, 2008, “
A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
0742-4787,
130
(
4
), p.
042201
.
31.
Kachanov
,
L. M.
, 1958, “
Time of the Rupture Process Under Creep Conditions
,”
Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk.
0367-679X,
8
, pp.
26
31
.
32.
Robotnov
,
Y. N.
, 1969,
Creep Problems in Structural Mechanics
,
North-Holland
,
Amsterdam
.
33.
Chaboche
,
J. L.
, 1988, “
Continuum Damage Mechanics: Part I—General Concepts
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
59
64
.
34.
Memon
,
I. R.
,
Zhang
,
X.
, and
Cui
,
D.
, 2002, “
Fatigue Life Prediction of 3-D Problems by Damage Mechanics With Two-Block Loading
,”
Int. J. Fatigue
0142-1123,
24
, pp.
29
37
.
35.
Chen
,
L.
,
Chen
,
Q.
, and
Shao
,
E.
, 1989, “
Study on Initiation and Propagation Angles of Sub-Surface Cracks in GCr15 Bearing Steel Under Rolling Contact
,”
Wear
0043-1648,
133
, pp.
205
218
.
36.
Okabe
,
A.
, and
Boots
,
B.
, 1992,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
,
Wiley
,
New York
.
37.
Moller
,
J.
, 1994,
Lectures Notes on Random Voronoi Tessellations
,
Springer
,
Berlin
.
38.
Lemaitre
,
J.
, 1992,
A Course on Damage Mechanics
,
Springer-Verlag
,
Berlin
.
39.
Chaboche
,
J. L.
, and
Lesne
,
P. M.
, 1988, “
A Non-Linear Continuous Fatigue Damage Model
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
11
, pp.
1
17
.
40.
Xiao
,
Y. C.
,
Li
,
S.
, and
Gao
,
Z.
, 1998, “
A Continuum Damage Mechanics Model for High Cycle Fatigue
,”
Int. J. Fatigue
0142-1123,
20
, pp.
503
508
.
41.
Memon
,
I. R.
,
Cui
,
D.
, and
Zhang
,
X.
, 1999, “
Fatigue Life Prediction of 3-D Problems by Damage Mechanics—Finite Element Additional Load Method
,”
Proceedings of the Seventh International Fatigue Conference
, Beijing, China, pp.
827
832
.
42.
Bolotin
,
V. V.
, 1999,
Mechanics of Fatigue
,
CRC
,
Boca Raton, FL
.
43.
Otsuka
,
A.
,
Sugawara
,
H.
, and
Shomura
,
M.
, 1996, “
A Test Method for Mode II Fatigue Crack Growth Relating to a Model for Rolling Contact Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
19
(
10
), pp.
1265
1275
.
44.
Lemaitre
,
J.
,
Sermage
,
J. P.
, and
Desmorat
,
R.
, 1999, “
A Two Scale Damage Concept Applied to Fatigue
,”
Int. J. Fract.
0376-9429,
97
, pp.
67
81
.
45.
Styri
,
H.
, 1951, “
Fatigue Strength of Ball Bearing Races and Heat-Treated 52100 Steel Specimens
,”
Proceedings of the ASTM 1951
, Vol.
51
, pp.
682
700
.
46.
Ashby
,
M. F.
, and
Hallam
,
S. D.
, 1986, “
The Fracture of Brittle Solids Containing Small Cracks Under Compressive Stress States
,”
Acta Mater.
1359-6454,
34
, pp.
497
510
.
47.
Wang
,
Y.
, and
Hadfield
,
M.
, 2004, “
Failure Modes of Ceramic Rolling Elements With Surface Crack Defects
,”
Wear
0043-1648,
256
, pp.
208
219
.
48.
Melander
,
A.
, 1998, “
Simulation of the Behavior of Short Cracks at Inclusions Under Rolling Contact Fatigue Loading—Specially the Effect of Plasticity
,”
Bearing Steels: Into the 21st Century
,
J.
Hoo
and
W.
Green
, eds.,
ASTM
,
Philadelphia, PA
, Vol.
1327
, pp.
70
86
.
49.
Raje
,
N.
,
Slack
,
T.
, and
Sadeghi
,
F.
, 2009, “
A Discrete Damage Mechanics Model for High Cycle Fatigue in Polycrystalline Materials Subject to Rolling Contact
,”
Int. J. Fatigue
0142-1123,
31
, pp.
346
360
.
50.
Shao
,
E.
,
Huang
,
X.
,
Wang
,
C.
,
Zhu
,
Y.
, and
Chen
,
Q.
, 1987, “
A Method of Detecting Rolling Contact Crack Initiation and the Establishment of Crack Propagation Curves
,”
STLE Tribol. Trans.
1040-2004,
31
(
1
), pp.
6
11
.
51.
Leng
,
X.
,
Chen
,
Q.
, and
Shao
,
E.
, 1988, “
Initiation and Propagation of Case Crushing Cracks in Rolling Contact Fatigue
,”
Wear
0043-1648,
122
, pp.
33
43
.
52.
Miyashita
,
Y.
,
Yoshimura
,
Y.
,
Xu
,
J. -Q.
,
Horikoshi
,
M.
, and
Mutoh
,
Y.
, 2003, “
Subsurface Crack Propagation in Rolling Contact Fatigue of Sintered Alloy
,”
JSME Int. J., Ser. A
1340-8046,
46
(
3
), pp.
341
347
.
53.
Fajdiga
,
G.
,
Glodez
,
S.
, and
Kramar
,
J.
, 2007, “
Pitting Formation Due to Surface and Sub-Surface Initiated Fatigue Crack Growth in Contacting Mechanical Elements
,”
Wear
0043-1648,
262
, pp.
1217
1224
.
54.
Chen
,
Q.
,
Shao
,
E.
,
Zhao
,
D.
,
Gue
,
J.
, and
Fan
,
Z.
, 1991, “
Measurement of the Critical Size of Inclusions Initiating Contact Fatigue Cracks and Its Application in Bearing Steels
,”
Wear
0043-1648,
147
, pp.
285
294
.
55.
Harris
,
T. A.
, 2001,
Rolling Bearing Analysis
,
Wiley
,
New York
.
56.
Harris
,
T. A.
, and
Barnsby
,
R. M.
, 2001, “
Life Ratings for Ball and Roller Bearings
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
215
, pp.
577
595
.
57.
Jalalahmadi
,
B.
,
Sadeghi
,
F.
, and
Peroulis
,
D.
, 2009, “
A Numerical Fatigue Damage Model for Life Scatter of MEMS Devices
,”
J. Microelectromech. Syst.
1057-7157,
18
(
5
), pp.
1016
1031
.
58.
Poplawski
,
J. V.
,
Peters
,
S. M.
, and
Zaretsky
,
E. V.
, 2001, “
Effect of Roller Profile on Cylindrical Roller Bearing Life Predication—Part I: Comparison of Bearing Life Theories
,”
Tribol. Trans.
1040-2004,
44
(
3
), pp.
339
350
.
You do not currently have access to this content.