An average Reynolds equation considering the effects of a pad’s annular grooves and surface roughness is developed in this study to examine mixed lubrication in the chemical mechanical polishing (CMP) of a copper-film silicon wafer. This equation is obtained on the basis of the principle that the pressure gradients and volume flow rates in the direction normal to the border of a groove and a plateau as well as on two sides of the border must be equal. The continuities of volume flow rates and hydrodynamic pressure on two sides of the border as well as in the direction normal to the border of a groove and a plateau are satisfied in order to develop this Reynolds equation. The removal rate model is obtained by taking the concentration of active abrasives in the slurry and the pad grooves into account. Theoretical results are also shown in order to investigate the effects of changing the groove depth and width on the removal rate and the nonuniformity of a copper-film wafer. The application of concentric grooves in general can lower the suction pressure (negative pressure) formed between the pad and the wafer, elevate the wear rate, and reduce the nonuniformity. However, the influences of the groove depth on wear rate and nonuniformity become insignificant when the depth is excessively large. The removal rate is reduced by increasing the groove width such that it finally approaches to the result of a nongrooved pad.

1.
Lloy
,
F. A.
, 1974, “
Parameters Contributing to Power Loss in Disengaged Wet Clutches
,”
SAE Technical Paper Series
, Paper No. 740676.
2.
Razzzaque
,
M. M.
, and
Kato
,
T.
, 1999, “
Effects of Groove Orientation on Hydrodynamic Behavior of Wet Clutch Coolant Films
,”
ASME J. Tribol.
0742-4787,
112
, pp.
409
414
.
3.
Berger
,
E. J.
,
Sadeghi
,
F.
, and
Krousgrill
,
C. M.
, 1996, “
Finite Element Modeling of Engagement of Rough and Grooved Wet Clutches
,”
ASME J. Tribol.
0742-4787,
118
, pp.
137
146
.
4.
Jang
,
J.
, and
Khonsari
,
M.
, 1999, “
Thermal Characteristics of a Wet Clutch
,”
ASME J. Tribol.
0742-4787,
121
, pp.
610
617
.
5.
Razzzaque
,
M. M.
, and
Kato
,
T.
, 1999, “
Effects of a Groove on the Behavior of a Squeeze Film Between a Grooved and a Plain Rotating Annular Disk
,”
ASME J. Tribol.
0742-4787,
121
, pp.
807
815
.
6.
Preston
,
F.
, 1972, “
The Theory and Design of Plate Glass Polishing Machines
,”
Glass Technol.
0017-1050,
11
, pp.
214
256
.
7.
Burke
,
P. A.
, 1991, “
Semi-empirical Modeling of SiO2 Chemical-Mechanical Polishing Planarization
,” VMIC Conf., Vol.
1112
, pp.
379
384
.
8.
Warnock
,
J.
, 1991, “
A Two-Dimenional Process Model for Chemomechanical Polish Planarization
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2398
2402
.
9.
Shi
,
F. G.
,
Zhao
,
B.
, and
Wang
,
S. Q.
, 1998, “
A New Theory for CMP With Soft Pads
,” IEEE, IITC98, pp.
73
75
.
10.
Runnels
,
S. R.
, and
Eyman
,
L. M.
, 1994, “
Tribology Analysis of Chemical-Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
141
(
6
), pp.
1698
1701
.
11.
Runnels
,
S. R.
, 1994, “
Featured-Scale Fluid-Based Erosion Modeling for Chemical-Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
141
(
7
), pp.
1900
1905
.
12.
Sundararajan
,
S.
,
Thakurta
,
D. G.
,
Schwendeman
,
D. W.
,
Murarka
,
S. P.
, and
Gill
,
W. N.
, 1999, “
Two-Dimensional Wafer-Scale Chemical-Mechanical Planarization Models Based on Lubrication Theory and Mass Transport
,”
J. Electrochem. Soc.
0013-4651,
146
(
2
), pp.
761
766
.
13.
Yu
,
Y.
,
Yu
,
C. C.
, and
Orlowski
,
M.
, 1993, “
A Statistical Polishing Pad Model for Chemical-Mechanical Polishing
,” IEEE IEDM, Washington DC, Dec. 5–8 pp.
865
868
.
14.
Larsen-Basse
,
J.
, and
Liang
,
H.
, 1999, “
Probable Role of Abrasion in Chemomechanical Polishing of Tungsten
,”
Wear
0043-1648,
233–235
, pp.
647
654
.
15.
Liu
,
C.
,
Dai
,
B.
,
Tseng
,
W.
, and
Yeh
,
C.
, 1996, “
Modeling of the Wear Mechanism During Chemical-Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
143
(
2
), pp.
716
721
.
16.
Seok
,
J.
,
Sukam
,
C. P.
,
Kim
,
A. T.
,
Tichy
,
J. A.
, and
Cale
,
T. S.
, 2003, “
Multiscale Material Romoval Modeling of Chemical Mechanical Polishing
,”
Wear
0043-1648,
254
, pp.
307
320
.
17.
Zhao
,
Y.
, and
Chang
,
L.
, 2002, “
A Micro-Contact and Wear Model for Chemical-Mechanical Polishing of Silicon Wafers
,”
Wear
0043-1648,
252
, pp.
220
226
.
18.
Yu
,
Y.
,
Yu
,
C. C.
, and
Orlowski
,
M.
, 1994, “
Combined Asperity Contact and Fluid Flow Model for Chemical-Mechanical Polishing
,” IEEE International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits, New York, June 5–6, pp.
29
32
.
19.
Tichy
,
J.
,
Levert
,
J. A.
,
Shan
,
L.
, and
Danyluk
,
S.
, 1999, “
Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
0013-4651,
146
(
4
), pp.
1523
1528
.
20.
Shan
,
L.
,
Levert
,
J.
,
Meade
,
L.
,
Tichy
,
J.
, and
Danyluk
,
S.
, 2000, “
Interfacial Fluid Mechanics and Pressure Prediction in Chemical Mechanical Polishing
,”
ASME J. Tribol.
0742-4787,
122
, pp.
539
543
.
21.
Levert
,
J. A.
,
Danyluk
,
S.
, and
Tichy
,
J.
, 2000, “
Mechanism for Subambient Interfacial Pressure While Polishing With Liquids
,”
ASME J. Tribol.
0742-4787,
122
, pp.
450
457
.
22.
Lin
,
J. F.
,
Chern
,
J. D.
,
Chang
,
Y. H.
,
Kuo
,
P. L.
, and
Tsai
,
M. S.
, 2004, “
Analysis of the Tribological Mechanisms Arising in the Chemical Mechanical Polishing of Copper-Film Wafers
,”
ASME J. Tribol.
0742-4787,
126
, pp.
185
199
.
23.
Luo
,
J.
, and
Dornfeld
,
D. A.
, 2001, “
Material Removal Mechanism in Chemical Mechanical Polishing: Theory and Modeling
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
14
(
2
), pp.
112
133
.
24.
Jeng
,
Y. R.
, and
Huang
,
P. Y.
, 2004, “
Impact of Abrasive Particles on the Material Removal Rate in CMP
,”
Electrochem. Solid-State Lett.
1099-0062,
7
(
2
), pp.
G40
G43
.
25.
Pourbaix
,
M.
, 1995,
Lectures on Electrochemical Corrosion
,
NACE
,
Houston, TX
.
26.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
27.
Seok
,
J.
,
Kim
,
A. T.
,
Cale
,
T. S.
, and
Tichy
,
J. A.
, 2004, “
Two-Dimensional Analysis of an Elastic Layer Coupled to a Viscous Fluid
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
162
167
.
28.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
29.
Ward
,
I. M.
, and
Hadley
,
D. W.
, 1993,
An Introduction to Mechanical Properties of Solid Polymers
,
Wiley
,
New York
.
30.
Ward
,
I. M.
, 1983,
Mechanical Properties of Solid Polymers
,
Wiley
,
New York
.
31.
Taber
,
D.
, 1951,
The Hardness of Metal
,
Oxford University Press
,
Oxford
.
32.
McFarlane
,
J. S.
, and
Tabor
,
D.
, 1950, “
Relation Between Friction and Adhesion
,”
Proc. R. Soc. London, Ser. A
1364-5021,
202
, pp.
244
253
.
33.
Burwell
,
J. T.
, and
Strang
,
C. D.
, 1952, “
Metallic Wear
,”
Proc. R. Soc. London, Ser. A
1364-5021,
212A
, pp.
470
477
.
You do not currently have access to this content.