This study seeks to explain removal rate trends and scatter in thermal silicon dioxide and PECVD tetraethoxysilane-sourced silicon dioxide (PE-TEOS) CMP using an augmented version of the Langmuir-Hinshelwood mechanism. The proposed model combines the chemical and mechanical facets of interlevel dielectric (ILD) CMP and hypothesizes that the chemical reaction temperature is determined by transient flash heating. The agreement between the model and data suggests that the main source of apparent scatter in removal rate data plotted as rate versus pressure times velocity is competition between mechanical and thermochemical mechanisms. A method of visualizing removal rate data is described that shows, apart from any particular interpretative theory, that a smooth and easily interpretable surface underlies the apparent scatter.

1.
Preston
,
F.
,
1927
, “
The Theory and Design of Plate Glass Polishing Machines
,”
J. Soc. Glass Technol.
,
11
, pp.
214
256
.
2.
Cook
,
L. M.
,
1990
, “
Chemical Processes in Glass Polishing
,”
J. Non-Cryst. Solids
,
120
, pp.
152
170
.
3.
Tomozawa
,
M.
,
1997
, “
Oxide CMP Mechanisms
,”
Solid State Technol.
,
pp.
169
175
.
4.
Zhang
,
F.
, and
Busnaina
,
A.
,
1998
, “
The Role of Particle Adhesion and Surface Deformation in Chemical Mechanical Polishing Processes
,”
Electrochem. Solid-State Lett.
,
1
, pp.
184
187
.
5.
Tseng
,
W.
, and
Wang
,
Y.
,
1997
, “
Re-Examination of Pressure and Speed Dependencies of Removal Rate During Chemical Mechanical Polishing Processes
,”
J. Electrochem. Soc.
,
144
, pp.
L15–L17
L15–L17
.
6.
Shi
,
F.
, and
Zhao
,
B.
,
1998
, “
Modeling of Chemical Mechanical Polishing With Soft Pads
,”
Appl. Phys. A: Mater. Sci. Process.
,
67
, pp.
249
252
.
7.
Zhao
,
B.
, and
Shi
,
F.
,
1999
, “
Chemical Mechanical Polishing—Threshold Pressure and Mechanism
,”
Electrochem. Solid-State Lett.
,
2
, pp.
145
147
.
8.
Zhao, B., and Shi, F., 1999, “Chemical Mechanical Polishing in IC Processes: New Fundamental Insights,” Proc. of 4th CMP-MIC, Santa Clara, CA, pp. 13–22.
9.
Stein, D., and Hetherington, D., 2002, “Review and Experimental Analysis of Oxide CMP Models,” Chemical Mechanical Planarization in IC Device Manufacturing III, R. Opila et al., eds., The Electrochemical Society Proceedings Series, Pennington, NJ, PV 99-37, pp. 217–233.
10.
Borst
,
C.
,
Thakurta
,
D.
,
Gill
,
W.
, and
Gutmann
,
R.
,
2002
, “
Surface Kinetics Model for SiLK Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
,
149
, pp.
G118–G127
G118–G127
.
11.
Borst, C., Thakurta, D., Gill, W., and Gutmann, R., 2002, Chemical-Mechanical Polishing of Low Dielectric Constant Polymers and Organosilicate Glasses, Kluwer Academic, Boston, MA.
12.
Patrick
,
W. J.
,
Guthrie
,
W. L.
,
Standley
,
C. L.
, and
Schiable
,
P. M.
,
1991
, “
Applications of Chemical Mechanical Polishing to the Fabrication of VLSI Circuit Interconnections
,”
J. Electrochem. Soc.
,
138
, p.
1778
1778
.
13.
Sorooshian
,
J.
,
DeNardis
,
D.
,
Charns
,
L.
,
Li
,
Z.
,
Shadman
,
F.
,
Boning
,
D.
,
Hetherington
,
D.
, and
Philipossian
,
A.
,
2004
, “
Arrhenius Characterization of ILD and Copper CMP Processes
,”
J. Electrochem. Soc.
,
151
, pp.
G85–G88
G85–G88
.
14.
Lim
,
S. C.
, and
Ashby
,
M. F.
,
1987
, “
Wear Mechanism Maps
,”
Acta Metall.
,
35
, pp.
1
24
.
15.
Williams
,
J. A.
,
1999
, “
Wear Modeling: Analytical, Computational and Mapping: A Continuum Mechanics Approach
,”
Wear
,
225–229
, pp.
1
17
.
16.
Lefevre, P., Rader, W. S., Van Calcer, P., Poutasse, C., Ina, K., Sakai, K., and Tamai, K., 2002, “Fujimi Planarite First Slurry for a Three Slurries Low K CMP Process,” Proc. 7th International Symposium on Chemical-Mechanical Planarization (CAMP), Lake Placid, NY.
17.
Borucki, L., Jindal, A., Cale, T., Gutmann, R., Tichy, J., Ng, S. H., and Danyluk, S., 2004, “Experimental and Theoretical Analysis of Non-Rotating Copper Wafer Polishing,” Proc. of 9th CMP-MIC, Marina Del Ray, CA, pp. 106–113.
18.
Press, W. H., Teulkolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in C, 2nd ed., Cambridge University Press, New York.
19.
Cowan, R. S., and Winer, W. O., ASM Handbook: Vol. 18 Friction, Lubrication and Wear Technology, ASM International, OH.
20.
Borucki, L., Ng, S.-H., and Danyluk, D., 2004, “Fluid Pressures and Pad Topograpy in Chemical-Mechanical Polishing,” submitted to ASME J. Tribology.
21.
Elmufdi, C. L., Paesano, A., Muldowney, G. P., and James, D. B., 2004, “Solid Mechanics of Grooved CMP Pads: Modeling and Experiments,” Proc. 9th International Symposium on Chemical-Mechanical Planarization (CAMP), Lake Placid, NY, 8–11 August.
22.
Shan, L., 2000, “Mechanical Interactions at the Interface of Chemical Mechanical Polishing,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
You do not currently have access to this content.