Chemical Mechanical Polishing (CMP) is a highly effective technique for planarizing wafer surfaces. Consequently, considerable research has been conducted into its associated material removal mechanisms. The present study proposes a CMP material removal rate model based upon a micro-contact model which considers the effects of the abrasive particles located between the polishing interfaces, thereby the down force applied on the wafer is carried both by the deformation of the polishing pad asperities and by the penetration of the abrasive particles. It is shown that the current theoretical results are in good agreement with the experimental data published previously. In addition to such operational parameters as the applied down force, the present study also considers consumable parameters rarely investigated by previous models based on the Preston equation, including wafer surface hardness, slurry particle size, and slurry concentration. This study also provides physical insights into the interfacial phenomena not discussed by previous models, which ignored the effects of abrasive particles between the polishing interfaces during force balancing.

1.
Preston
,
F. W.
,
1927
, “
The Theory and Design of Plate Glass Polishing Machines
,”
J. Soc. Glass Technol.
,
11
, p.
214
214
.
2.
Shan
,
L.
,
Levert
,
J.
,
Meade
,
L.
,
Tichy
,
J.
, and
Danyluk
,
S.
,
2000
, “
Interfacial Fluid Mechanics and Pressure Prediction in Chemical Mechanical Polishing
,”
ASME J. Tribol.
,
122
, pp.
539
543
.
3.
Jeng
,
Y. R.
, and
Tsai
,
H. J.
,
2002
, “
Tribological Analysis on Powder Slurry in Chemical Mechanical Polishing
,”
J. Phys. D
,
35
, pp.
1585
1591
.
4.
Jeng
,
Y. R.
, and
Tsai
,
H. J.
,
2003
, “
Improved Model of Wafer/Pad Powder Slurry for CMP
,”
J. Electrochem. Soc.
,
150
(
6
), pp.
G348–G354
G348–G354
.
5.
Jeng
,
Y. R.
,
Huang
,
P. Y.
, and
Pan
,
W. C.
,
2003
, “
Tribological Analysis of CMP With Partial Asperity Contact
,”
J. Electrochem. Soc.
,
150
(
10
), pp.
G630–G637
G630–G637
.
6.
Phol
,
M. C.
, and
Griffiths
,
D. A.
,
1996
, “
The Importance of Particle Size to the Performance of Abrasive Particle in the CMP Process
,”
J. Electron. Mater.
,
25
, pp.
1612
1616
.
7.
Liang
,
H.
,
Kaufman
,
F.
,
Sevilla
,
R.
, and
Anjur
,
S.
,
1997
, “
Wear Phenomena in Chemical Mechanical Polishing
,”
Wear
,
211
, pp.
271
279
.
8.
Basim
,
G. B.
,
Adler
,
J. J.
,
Mahajan
,
U.
,
Singh
,
R. K.
, and
Moudgil
,
B. M.
,
2000
, “
Effect of Particle Size of Chemical Mechanical Polishing Slurries for Enhanced Polishing With Minimal Defects
,”
J. Electrochem. Soc.
,
147
(
9
), pp.
3523
3528
.
9.
Mazaheri
,
A. R.
, and
Ahmadi
,
G.
,
2002
, “
Modeling the Effect of Bumpy Abrasive Particles on Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
,
149
(
7
), pp.
G370–G375
G370–G375
.
10.
Runnels
,
S. R.
, and
Eyman
,
L. M.
,
1994
, “
Tribology Analysis of Chemical Polishing
,”
J. Electrochem. Soc.
,
141
(
6
), pp.
1698
1700
.
11.
Tseng
,
W. T.
, and
Wang
,
Y. L.
,
1997
, “
Re-Examination of Pressure and Speed Dependences of Removal Rate During Chemical-Mechanical Polishing Process
,”
J. Electrochem. Soc.
,
144
(
2
), pp.
L15–L17
L15–L17
.
12.
Zhang
,
F.
, and
Busnaina
,
A.
,
1998
, “
The Role of Partical Adhesion and Surface Deformation in Chemical Mechanical Polishing Processes
,”
Electrochem. Solid-State Lett.
,
1
(
4
), pp.
184
187
.
13.
Zhao
,
B.
, and
Shi
,
F. G.
,
1999
, “
Chemical Mechanical Polishing: Threshold Pressure and Mechanism
,”
Electrochem. Solid-State Lett.
,
2
(
3
), pp.
145
147
.
14.
Luo
,
J.
, and
Dornfeld
,
D. A.
,
2001
, “
Material Removal Mechanism in Chemical Mechanical Polishing
,”
IEEE Trans. Semicond. Manuf.
,
14
(
2
), pp.
112
133
.
15.
Luo
,
J.
, and
Dornfeld
,
D. A.
,
2003
, “
Material Removal Regions in Chemical Mechanical Planarization for Submicron Integrated Circuit Fabrication: Coupling Effects of Slurry Chemicals, Abrasive Size Distribution, and Wafer-Pad Contact Area
,”
IEEE Trans. Semicond. Manuf.
,
16
(
1
), pp.
45
56
.
16.
Luo
,
J.
, and
Dornfeld
,
D. A.
,
2003
, “
Effects of Abrasive Size Distribution in Chemical Mechanical Planarization: Modeling and Verification
,”
IEEE Trans. Semicond. Manuf.
,
16
(
3
), pp.
469
476
.
17.
Zhao
,
Y.
, and
Chang
,
L.
,
2002
, “
A Micro-Contact and Wear Model for Chemical Mechanical Polishing of Silicon Wafers
,”
Wear
,
252
, pp.
220
226
.
18.
Jeng
,
Y. R.
,
Horng
,
J. H.
, and
Chen
,
C. L.
,
2003
, “
A Model for Temperature Rise of Polishing Process Considering Effects of Polishing Pad and Abrasive
,”
ASME J. Tribol.
126
, pp.
422
429
.
19.
Levert
,
J. A.
,
Mess
,
F. M.
,
Salant
,
M. F.
,
Danyluk
,
S.
, and
Backer
,
A. R.
,
1998
, “
Mechanisms of Chemical Mechanical Polishing of SiO2 Dielectric on Integrated Circuits
,”
STLE Tribol. Trans.
,
41
(
4
), pp.
593
599
.
20.
Seok
,
J.
,
Sukam
,
C. P.
,
Kim
,
A. T.
,
Tichy
,
J. A.
, and
Cale
,
T. S.
,
2003
, “
Multiscale Material Removal Modeling of Chemical Mechanical Polishing
,”
Wear
,
254
, pp.
307
320
.
21.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
(
1442
), pp.
300
319
.
22.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
, pp.
86
93
.
23.
Abbott
,
E. J.
, and
Firestone
,
F. A.
,
1933
, “
Specifying Surfaces Quantity—A Method Based on Accurate Measurement and Comparison
,”
Mesh. Engr.
,
55
, p.
569
569
.
24.
Jeng
,
Y. R.
, and
Wang
,
P. Y.
,
2003
, “
An Elliptical Microcontact Model Considering Elastic, Elastoplastic and Plastic Deformation
,”
ASME J. Tribol.
,
125
, pp.
232
240
.
25.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
26.
Jeng
,
Y. R.
, and
Huang
,
P. Y.
,
2003
, “
Impact of Abrasive Particles on the Material Removal Rate in the Chemical-Mechanical Polishing Process: A Micro-Contact Perspective
,”
Electrochem. Solid-State Lett.
,
7
(
2
), pp.
G40–G43
G40–G43
.
27.
Bielmann
,
M.
,
Mahajan
,
U.
, and
Singh
,
R. K.
,
1999
, “
Effect of Particle Size During Tungsten Chemical Mechanical Polishing
,”
Electrochem. Solid-State Lett.
,
2
(
8
), pp.
401
403
.
28.
Xu, R., Smart, G., and Zheng, M., 1999, “Particle Characteristic and Removal Rate in CMP Process,” in Proceedings of the Fourth International Chemical-Mechanical Planarization for ULSI Multilevel Interconnection Conference, Santa Clara, CA, pp. 253–255.
29.
Izumitani, T., 1979, in Treaties on Material Science and Technology, edited by Tomzawa, M. and Doremus, R., Academic Press, New York, p. 115.
30.
Fu
,
G.
,
Chandre
,
A.
,
Guha
,
S.
, and
Subhash
,
G.
,
2001
, “
A Plasticity-Based Model of Material Removal in Chemical-Mechanical Polishing (CMP)
,”
IEEE Trans. Semicond. Manuf.
,
14
(
4
), pp.
406
417
.
31.
Lu
,
J.
,
Coppeta
,
J.
,
Roger
,
C.
,
Manno
,
V. P.
,
Racz
,
L.
,
Philipossia
,
A.
,
Moinpour
,
M.
, and
Kaufman
,
F.
,
2000
, “
The Effect of Wafer Shape on Slurry Film Thickness and Friction Coefficients in Chemical Mechanical Planarization
,”
Mater. Res. Soc. Symp. Proc.
,
613
, pp.
E1.2.1–E1.2.6
E1.2.1–E1.2.6
.
32.
Zhou
,
C.
,
Shan
,
L.
,
Hight
,
J. R.
, and
Danyluk
,
S.
,
2002
, “
Influence of Colloidal Abrasive Size on Material Removal Rate and Surface Finish in SiO2 Chemical Mechanical Polishing
,”
STLE Tribol. Trans.
,
45
(
2
), pp.
232
238
.
You do not currently have access to this content.