In this paper the subject of friction prediction is revisited, with the aim of obtaining a general formula predicting the coefficient of friction over a wide range of operating conditions. By means of full numerical simulations of the smooth isothermal elliptic contact, and assuming an Eyring non-Newtonian behavior, the coefficient of friction is computed for a wide range of operating conditions. It is shown that with respect to sliding friction, all results can be presented on a single generalized friction curve relating a reduced coefficient of friction to a characteristic nondimensional shear stress. Finally, it is shown that some measured data presented in the literature when presented in terms of the derived parameters closely follow the derived behavior, which provides a validation of the theoretical results.

1.
Dowson, D., and Higginson, G. R., 1966, Elastohydrodynamic Lubrication, The Fundamentals of Roller and Gear Lubrication, Pergamon Oxford.
2.
Hamrock
,
B.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part III-Fully Flooded Results
,”
ASME J. Tribol.
,
99
, pp.
264
276
.
3.
Lubrecht
,
A. A.
, and
Venner
,
C. H.
,
1999
, “
Elastohydrodynamic Lubrication of Rough Surfaces
,”
Proc. Inst. Mech. Eng., Part J
,
213
, pp.
397
404
.
4.
Spikes
,
H. A.
,
1999
, “
Thin Films in Elastohydrodynamic Lubrication: The Contribution of Experiment
,”
Proc. Inst. Mech. Eng., Part J
,
213
, pp.
335
352
.
5.
Kaneta
,
M.
, and
Kishikawa
,
H.
,
1999
, “
Experimental Study on Microelastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part J
,
213
, pp.
371
382
.
6.
Johnson
,
K. L.
, and
Tevaarwerk
,
J. L.
,
1977
, “
Shear Behavior of Elastohydrodynamic Oil Films
,”
Proc. R. Soc. London, Ser. A
,
356
, pp.
215
236
.
7.
Bair
,
S.
, and
Winer
,
W. O.
,
1979
, “
A Rheological Model for Elastohydrodynamic Contacts Based in Primary Laboratory Data
,”
ASME J. Tribol.
,
101
, pp.
258
265
.
8.
Evans
,
C. R.
, and
Johnson
,
K. L.
,
1986
, “
Rheological Properties of EHD Lubricants
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
200
, pp.
303
312
.
9.
Jacobson
,
B.
, and
Hamrock
,
B. J.
,
1984
, “
Non-Newtonian Fluid Model Incorporated into Elastohydrodynamic Lubrication of Rectangular Contacts
,”
ASME J. Tribol.
,
106
, pp.
275
284
.
10.
Houpert, and L. G., Hamrock, B., 1986, “Elastohydrodynamic Calculations as a Tool to Study Scuffing,” Proceedings of the 12th Leeds-Lyon Symposium on Tribology, Tribology Series, Elsevier Amsterdam, pp. 146–155.
11.
Conry
,
T. F.
,
Wang
,
S.
, and
Cusano
,
C.
,
1987
, “
A Reynolds-Eyring Equation for Elastohydrodynamic Lubrication in Line Contacts
,”
ASME J. Tribol.
,
109
, pp.
648
658
.
12.
Lee
,
R-T.
, and
Hamrock
,
B. J.
,
1990
, “
A Circular Non-Newtonian Model: Part I—Used in Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
, pp.
386
496
.
13.
Sui
,
P. C.
, and
Sadeghi
,
F.
,
1991
, “
Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
113
, pp.
390
397
.
14.
Hsiao
,
H.-S.
, and
Hamrock
,
B. J.
,
1994
, “
Non-Newtonian and Thermal Effects on Film Generation and Traction Reduction in EHL Line Contact Conjunctions
,”
ASME J. Tribol.
,
116
, pp.
559
568
.
15.
Kim
,
K. H.
, and
Sadeghi
,
F.
,
1991
, “
Non-Newtonian Elastohydrodynamic Lubrication of Point Contacts
,”
ASME J. Tribol.
,
113
, pp.
703
711
.
16.
Holt
,
C. A.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
1996
, “
Solution of the Non-Newtonian Elastohydrodynamic Problem for Circular Contacts Based on a Flow Continuity Method
,”
Proc. Inst. Mech. Eng., Part J
,
210
, pp.
247
258
.
17.
Evans
,
C. R.
, and
Johnson
,
K. L.
,
1986
, “
Regimes of Traction in Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
200
, pp.
313
324
.
18.
Olver
,
A.
, and
Spikes
,
H. A.
,
1998
, “
Prediction of Traction in Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part J
,
212
, pp.
321
332
.
19.
Iivonen
,
H. T.
, and
Hamrock
,
B. J.
,
1991
, “
A Non-Newtonian Fluid Model Incorporated into Elastohydrodynamic Lubrication of Rectangular Contacts
,”
Wear
,
143
, pp.
297
305
.
20.
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
,
1998
, “
On Lubricant Transport Conditions in Elastohydrodynamic Conjunctions
,”
Proc. R. Soc. London, Ser. A
,
454
, pp.
763
787
.
21.
Greenwood
,
J. A.
,
2000
, “
Two-dimensional Flow of a Non-Newtonian Lubricant
,”
Proc. Inst. Mech. Eng., Part J
,
214
, pp.
29
41
.
22.
Roelands, C., 1966, Correlational Aspects of the Temperature-Pressure Relationship of Lubrication Oils, Ph.D. thesis, Technische Hogeschool Delft, The Netherlands.
23.
Moes
,
H.
,
1992
, “
Optimum Similarity Analysis with Applications to Elastohydrodynamic Lubrication
,”
Wear
,
159
, pp.
57
66
.
24.
Venner, C. H., 1991, Multilevel Solution of the EHL Line and Point Contact Problems, Ph.D. thesis, University of Twente, Enschede, The Netherlands.
25.
Klein Meuleman, P., Lubrecht, A. A., and ten Napel, W. E., 1985, “Traction in Elastohydrodynamic Lubrication,” University of Twente, Research Report No. WB 85–15.
26.
Lubrecht, A. A., 1987, The Numerical Solution of Elastohydrodynamically Lubricated Line- and Point Contact Problem using Multigrid Techniques, Ph.D. thesis, University of Twente, Enschede, The Netherlands.
27.
Venner, C. H., and Lubrecht, A. A., 1999, “Amplitude Reduction of Non-Isotropic Harmonic Patterns in Circular EHL Contacts, under Pure Rolling,” Proceedings of the 25th Leeds-Lyon Symposium on Tribology, Tribology Series 36, Elsevier, Amstardam, pp. 151–162.
You do not currently have access to this content.