A numerical study has been performed in an axisymmetric diffuser followed by a casing-liner annulus of a typical gas turbine combustor to analyze the flow structure and pressure recovery in the geometry. Static pressure recovery in a gas turbine combustor is important to ensure high pressure of air around the liner. However, the irreversible pressure losses reduce the static pressure recovery from the ideal value. The presence of swirl in the flow from compressor and prediffuser geometry before the dump diffuser influences the flow pattern significantly. In this study, flow structures are numerically predicted with different prediffuser angles and inlet swirl levels for different dump gaps. Streamline distributions and pressure plots on the casing and liner walls are analyzed. Static pressure recovery coefficients are obtained from the pressure distributions across the combustor. The effect of dump gap on the static pressure recovery has also been evaluated. It is observed that the best static pressure recovery can be obtained at optimum values of inlet swirl level and prediffuser angle. Dump gap is found to have significant influence on the static pressure recovery only at small prediffuser angle.

References

1.
Karki
,
K. C.
,
Oechsle
,
V. L.
, and
Mongia
,
H. C.
,
1992
, “
A Computational Procedure for Diffuser–Combustor Flow Interaction Analysis
,”
ASME J. Eng. Gas Turbines Power
,
114
(
1
), pp.
1
7
.10.1115/1.2906301
2.
Hestermann
,
R.
,
Kim
,
S.
,
Ben Khaled
,
A.
, and
Wittig
,
S.
,
1995
, “
Flow Field and Performance Characteristics of Combustor Diffusers: A Basic Study
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
686
695
.10.1115/1.2815454
3.
Rahim
,
A.
,
Veeravalli
,
S. V.
, and
Singh
,
S. N.
,
2002
, “
Effect of Inlet Swirl and Dump-Gap on the Wall Pressure Distribution of a Model Can-Combustor
,”
Indian J. Eng. Mater. Sci.
,
9
(
6
), pp.
472
479
.
4.
Singh
,
S. N.
,
Seshadri
,
V.
,
Saha
,
K.
,
Vempati
,
K. K.
, and
Bharani
,
S.
,
2006
, “
Effect of Inlet Swirl on the Performance of Annular Diffusers Having the Same Equivalent Cone Angle
,”
Proc. Inst. Mech. Eng., Part G
,
220
(
2
), pp.
129
143
.10.1243/09544100G05004
5.
Ghose
,
P.
,
Datta
,
A.
, and
Mukhopadhyay
,
A.
,
2013
, “
Effect of Dome Shape on Static Pressure Recovery in a Dump Diffuser at Different Inlet Swirl
,”
Int. J. Emerging Technol. Adv. Eng.
,
3
(
3
), pp.
465
471
.
6.
Rahim
,
A.
,
Singh
,
S. N.
, and
Veeravalli
,
S. V.
,
2007
, “
Liner Dome Shape Effect on the Annulus Flow Characteristics With and Without Swirl for a Can-Combustor Model
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
3
), pp.
359
369
.10.1243/09576509JPE353
7.
Walker
,
A. D.
,
Carrotte
,
J. F.
, and
McGuirk
,
J. J.
,
2009
, “
The Influence of Dump Gap on External Combustor Aerodynamics at High Fuel Injector Flow Rates
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
031506
.10.1115/1.3028230
8.
Moin
,
P.
, and
Mahesh
,
K.
,
1998
, “
Direct Numerical Simulation: A Tool in Turbulence Research
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
539
578
.10.1146/annurev.fluid.30.1.539
9.
Tsao
,
M.
, and
Lin
,
C. A.
,
1999
, “
Reynolds Stress Modeling of Jet and Swirl Interaction Inside a Gas Turbine Combustor
,”
Int. J. Numer. Methods Fluids
,
29
(
4
), pp.
451
464
.10.1002/(SICI)1097-0363(19990228)29:4<451::AID-FLD796>3.0.CO;2-X
10.
Xia
,
J. L.
,
Yadigaroglu
,
G.
,
Liu
,
Y. S.
,
Schmidli
,
J.
, and
Smith
,
B. L.
,
1998
, “
Numerical and Experimental Study of Swirling Flow in a Model Combustor
,”
Int. J. Heat Mass Transfer
,
41
(
11
), pp.
1485
1497
.10.1016/S0017-9310(97)00239-1
11.
Jawarneh
,
A. M.
, and
Vatistas
,
G. H.
,
2006
, “
Reynolds Stress Model in the Prediction of Confined Turbulent Swirling Flows
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1377
1382
.10.1115/1.2354530
12.
Shih
,
T.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k–ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
13.
Karim
,
V. M.
,
Bart
,
M.
, and
Erik
,
D.
,
2003
, “
Comparative Study of k-ε Turbulence Models in Inert and Reacting Swirling Flows
,”
AIAA
Paper No. 2003-3744. 10.2514/6.2003-3744
14.
Joung
,
D.
, and
Huh
,
K. Y.
,
2009
, “
Numerical Simulation of Non-Reacting and Reacting Flows in a 5 MW Commercial Gas Turbine Combustor
,”
ASME
Paper No. GT 2009-59987. 10.1115/2009-59987
15.
Zhu
,
J.
, and
Shih
,
T. H.
,
1994
, “
Computation of Confined Coflow Jets With Three Turbulence Models
,”
Int. J. Numer. Methods Fluids
,
19
(
10
), pp.
939
956
.10.1002/fld.1650191005
16.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
CRC Press
,
Boca Raton, FL
, pp.
142
145
.
17.
Ansys Inc., ANSYS FLUENT User's Guide
, Release 13.0, Ansys Inc., Canonsburg, PA, pp.
251
252
.
You do not currently have access to this content.