In this paper, the hydrodynamic and thermal performance of a miniature plate pin-finned heat sink is investigated experimentally by utilizing two widely used nanofluids, Al2O3–water and TiO2–water. The heat sink base plate, which is used in the cooling process of electronic devices, has the dimensions of 42 mm (L) × 42 mm (W) × 14 mm (H) and is made of aluminum and placed in a plexiglass case which is isolated from the environment using an insulator foam. The thermal performance of the heat sink is investigated by passing the nanofluid at constant inlet temperature while applying a constant heat flux of 124.8 kW/m2 to the bottom surface of the heat sink. The nanofluids are prepared in volume concentrations of 0.5, 1, 1.5, and 2% and their performances are measured considering water as the base fluid. Measuring the pressure difference between the entrance and exit of the heat sink made it possible to study the hydrodynamic performance of the heat sink. Although the measurements showed 15% and 30% increase in the pumping power for the volume concentration of 2% of Al2O3–water and TiO2–water nanofluids, respectively, the average heat transfer coefficients increased by 16% and 14% and the thermal resistance decreased by 17% and 14% for each nanofluid.

References

1.
Choi Su
,
S.
,
1995
,
Enhancing Thermal Conductivity of Fluids With Nanoparticles
, Vol.
231
,
ASME
,
New York
, pp.
99
106
.
2.
El-Brolossy
,
T. A.
, and
Saber
,
O.
,
2013
, “
Non-Intrusive Method for Thermal Properties Measurement of Nanofluids
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
498
503
.10.1016/j.expthermflusci.2012.08.011
3.
Reddy
,
M.
, and
Rao
,
V. V.
,
2013
, “
Experimental Studies on Thermal Conductivity of Blends of Ethylene Glycol–Water-Based TiO2 Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
31
36
.10.1016/j.icheatmasstransfer.2013.05.009
4.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2009
, “
A Combined Model for the Effective Thermal Conductivity of Nanofluids
,”
Appl. Therm. Eng.
,
29
(
11
), pp.
2477
2483
.10.1016/j.applthermaleng.2008.12.018
5.
Yiamsawasd
,
T.
,
Dalkilic
,
A. S.
, and
Wongwises
,
S.
,
2012
, “
Measurement of the Thermal Conductivity of Titania and Alumina Nanofluids
,”
Thermochim. Acta
,
545
, pp.
48
56
.10.1016/j.tca.2012.06.026
6.
Naphon
,
P.
, and
Nakharintr
,
L.
,
2013
, “
Heat Transfer of Nanofluids in the Mini-Rectangular Fin Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
40
, pp.
25
31
.10.1016/j.icheatmasstransfer.2012.10.012
7.
Ho
,
C. J.
, and
Chen
,
W. C.
,
2013
, “
An Experimental Study on Thermal Performance of Al2O3/Water Nanofluid in a Minichannel Heat Sink
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
516
522
.10.1016/j.applthermaleng.2012.07.037
8.
Zhou
,
M.
,
Xia
,
G.
,
Chai
,
L.
,
Li
,
J.
, and
Zhou
,
L.
,
2012
, “
Analysis of Flow and Heat Transfer Characteristics of Micro-Pin Fin Heat Sink Using Silver Nanofluids
,”
Sci. China Technol. Sci.
,
55
(
1
), pp.
155
162
.10.1007/s11431-011-4596-5
9.
Duangthongsuk
,
W.
,
Selim Dalkilic
,
A.
, and
Wongwises
,
S.
,
2012
, “
Convective Heat Transfer of Al2O3–Water Nanofluids in a Microchannel Heat Sink
,”
Curr. Nanosci.
,
8
(
3
), pp.
317
322
.10.2174/157341312800620368
10.
Ijam
,
A.
,
Saidur
,
R.
, and
Ganesan
,
P.
,
2012
, “
Cooling of Minichannel Heat Sink Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1188
1194
.10.1016/j.icheatmasstransfer.2012.06.022
11.
Selvakumar
,
P.
, and
Suresh
,
S.
,
2012
, “
Convective Performance of CuO/Water Nanofluid in an Electronic Heat Sink
,”
Exp. Therm. Fluid Sci.
,
40
, pp.
57
63
.10.1016/j.expthermflusci.2012.01.033
12.
Yu
,
X.
,
Feng
,
J.
,
Feng
,
Q.
, and
Wang
,
Q.
,
2005
, “
Development of a Plate-Pin Fin Heat Sink and Its Performance Comparisons With a Plate-Fin Heat Sink
,”
Appl. Therm. Eng.
,
25
(
2
), pp.
173
182
.10.1016/j.applthermaleng.2004.06.016
13.
Yang
,
Y. T.
, and
Peng
,
H. S.
,
2009
, “
Investigation of Planted Pin Fins for Heat Transfer Enhancement in Plate Fin Heat Sink
,”
Microelectron. Reliab.
,
49
(
2
), pp.
163
169
.10.1016/j.microrel.2008.11.011
14.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Altemani
,
C. A. C.
,
1980
, “
Experiments on In-Line Pin Fin Arrays and Performance Comparisons With Staggered Arrays
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
44
50
.10.1115/1.3244247
15.
Soodphakdee
,
D.
,
Behnia
,
M.
, and
Copeland
,
D. W.
,
2001
, “
A Comparison of Fin Geometries for Heatsinks in Laminar Forced Convection—Part I: Round, Elliptical, and Plate Fins in Staggered and In-Line Configurations
,”
Int. J. Microcircuits Electron. Packag.
,
24
(
1
), pp.
68
76
.
16.
Yu
,
X.
,
Feng
,
Q.
, and
Liu
,
Q.
,
2003
, “
Research on the Heat Transfer and Flow Performance of a Composite Heat Sink
,”
Xi'an Jiaotong Daxue Xuebao (J. Xi'an Jiaotong Univ., China)
,
37
(
7
), pp.
670
673
.
17.
Yu
,
X.
,
Feng
,
Q.
, and
Jianmei
,
F.
,
2004
, “
Research on Thermal Performance of Plate-Pin Fin Heat Sink
,”
Xi'an Jiaotong Daxue Xuebao (J. Xi'an Jiaotong Univ., China)
,
38
(
11
), pp.
1114
1117
.
18.
Heyhat
,
M. M.
,
Kowsary
,
F.
,
Rashidi
,
A. M.
,
Momenpour
,
M. H.
, and
Amrollahi
,
A.
,
2013
, “
Experimental Investigation of Laminar Convective Heat Transfer and Pressure Drop of Water-Based Al2O3 Nanofluids in Fully Developed Flow Regime
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
483
489
.10.1016/j.expthermflusci.2012.08.009
19.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
(
6
), pp.
577
588
.10.1007/s11051-004-3170-5
20.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
21.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), p. 571.10.1063/1.1700493
22.
Einstein
,
A.
,
1906
, “
A New Determination of Molecular Dimensions
,”
Ann. Phys.
,
19
(
2
), pp.
289
306
.
23.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.10.1021/i160003a005
24.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
,
Oxford University Press
,
London
, p.
365
.
25.
Moghaddami
,
M.
,
2005
, “
Numerical Investigation of Heat Transfer and Pressure Drop Coefficients for Different Nanofluids in Laminar and Turbulent Flows
,” M.Sc. dissertation, University of Tehran, Tehran, Iran.
26.
Kwak
,
H. S.
,
Kim
,
H.
,
Hyun
,
J. M.
, and
Song
,
T. H.
,
2009
, “
Thermal Control of Electroosmotic Flow in a Microchannel Through Temperature-Dependent Properties
,”
J. Colloid Interface Sci.
,
335
(
1
), pp.
123
129
.10.1016/j.jcis.2009.03.008
27.
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2009
, “
Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,”
Int. J. Heat Mass Transfer
,
52
(
9
), pp.
2189
2195
.10.1016/j.ijheatmasstransfer.2007.11.063
28.
Sohel
,
M. R.
,
Khaleduzzaman
,
S. S.
,
Saidur
,
R.
,
Hepbasli
,
A.
,
Sabri
,
M. F. M.
, and
Mahbubul
,
I. M.
,
2014
, “
An Experimental Investigation of Heat Transfer Enhancement of a Minichannel Heat Sink Using Al2O3–H2O Nanofluids
,”
Int. J. Heat Mass Transfer
,
74
, pp.
164
172
.10.1016/j.ijheatmasstransfer.2014.03.010
29.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
,
2007
, “
A Critical Review of Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
(
5
), pp.
797
817
.10.1016/j.rser.2005.06.005
30.
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
31.
Cheng
,
L.
,
Bandarra
,
F.
,
Enio
,
P.
, and
Thome
,
J. R.
,
2008
, “
Nanofluid Two-Phase Flow and Thermal Physics: A New Research Frontier of Nanotechnology and Its Challenges
,”
J. Nanosci. Nanotechnol.
,
8
(
7
), pp.
3315
3332
.10.1166/jnn.2008.413
32.
Mohammed
,
H. A.
,
Bhaskaran
,
G.
,
Shuaib
,
N. H.
, and
Saidur
,
R.
,
2011
, “
Heat Transfer and Fluid Flow Characteristics in Microchannels Heat Exchanger Using Nanofluids: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1502
1512
.10.1016/j.rser.2010.11.031
33.
Ijam
,
A.
, and
Saidur
,
R.
,
2012
, “
Nanofluid as a Coolant for Electronic Devices (Cooling of Electronic Devices)
,”
Appl. Therm. Eng.
,
32
, pp.
76
82
.10.1016/j.applthermaleng.2011.08.032
34.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
), pp.
560
568
.10.1016/j.ijthermalsci.2007.05.004
35.
Masoumi
,
N.
,
Sohrabi
,
N.
, and
Behzadmehr
,
A.
,
2009
, “
A New Model for Calculating the Effective Viscosity of Nanofluids
,”
J. Phys. D: Appl. Phys.
,
42
(
5
), p.
055501
.10.1088/0022-3727/42/5/055501
You do not currently have access to this content.