Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The kinetics and modeling of heat and mass transfer during the solar drying of cassava slices integrated with the pebble's sensible thermal storage material (PSTSM) were investigated. Fifteen thin layer drying models were adopted to model the drying curves following standard criteria for fitness. The maximum temperatures were 52.5 °C and 55 °C for plywood drying chamber (PLC) and Perspex glass chamber (PGC), respectively. It took both drying systems with Perspex and plywood chambers 38 h to reduce the moisture content of cassava slices from 56% w.b. to 10.62 and 15.20% w.b., respectively. The effective moisture diffusivity (De) for the system with Perspex glass and plywood chambers were 6.28 × 10−10 m2/s and 4.53 × 10−10 m2/s, respectively. The activation energy values were 20.56 kJ/mol and 20.82 kJ/mol for the system with Perspex and plywood, respectively. The mass transfer coefficient values for the cassava slices dried in Perspex and plywood were 1.70 × 10−6 and 1.67 × 10−6 m/s, respectively. At the same time, the heat transfer coefficients were 2.63 and 2.08 W/m2.K. The Midilli et al. and modified Henderson and Pabis models were adjudged the best to describe the solar drying of cassava slices using the Perspex and plywood drying chamber, respectively. Therefore, the obtained results would be useful in the design of solar drying equipment for agricultural products under natural convection mode.

References

1.
Saranraj
,
P.
,
Behera
,
S. S.
, and
Ray
,
R. C.
,
2019
, “Traditional Foods From Tropical Root and Tuber Crops: Innovations and Challenges,” In
Innovations in Traditional Foods
,
C. M.
Galanakis
, ed.,
Woodhead Publishing
,
Swaston, Cambridge, UK
, pp.
159
191
.
2.
Anstalt
,
S. V.
,
2013
, “
Food and Agriculture Organization of the United Nations
,” FAOSTAT–Statisical Database.
3.
Suherman
,
S.
,
Susanto
,
E. E.
,
Firdauzi
,
A.
, and
Wuryaningtyas
,
N.
,
2020
, “
Solar Dryer Applications for Cassava Slices Dryer
,”
AIP Conf. Proc.
,
2197
(
1
), p.
080007
.
4.
Komolafe
,
C. A.
, and
Waheed
,
M. A.
,
2018
, “
Design and Fabrication of a Forced Convection Solar Dryer Integrated With Heat Storage Materials
,”
Ann. de Chim. Sci. des Matér.
,
42
(
1
), pp.
22
39
.
5.
Komolafe
,
C. A.
,
2019
, “
Development of Numerical and Experimental Cocoa-Beans Solar Dryer
,”
Ph.D. thesis
,
Federal University of Agriculture
,
Abeokuta, Nigeria
.
6.
Komolafe
,
C. A.
,
Ojediran
,
J. O.
,
Ajao
,
F. O.
,
Dada
,
O. A.
,
Afolabi
,
Y. T.
, and
Oluwaleye
,
I. O.
,
2019
, “
Modelling of Moisture Diffusivity During Solar Drying of Locust Beans With Thermal Storage Material Under Forced and Natural Convection Mode
,”
Case Stud. Therm. Eng.
,
15
, p.
100542
, 1–11.
7.
Komolafe
,
C. A.
,
Waheed
,
M. A.
,
Kuye
,
S. I.
,
Adewumi
,
B. A.
,
Oluwaleye
,
I. O.
, and
Olayanju
,
T. M. A.
,
2020
, “
Sun Drying of Cocoa with Firebrick Thermal Storage Materials
,”
Int. J. Energy Res.
,
44
(
8
), pp.
7015
7025
.
8.
Komolafe
,
C. A.
,
Waheed
,
M. A.
,
Kuye
,
S. I.
,
Adewumi
,
B. A.
, and
Adejumo
,
A. O. D.
,
2021
, “
Thermodynamic Analysis of Forced Convective Solar Drying of Cocoa With Black Coated Sensible Thermal Storage Material
,”
Case Stud. Therm. Eng.
,
26
, p.
101140
, 1–12.
9.
Komolafe
,
C. A.
,
Waheed
,
M. A.
,
Ezekwem
,
C.
, and
Hii
,
C. L.
,
2022
, “
Numerical Analysis of Three-Dimensional Heat and Mass Transfer in Cocoa Beans Under a Solar Drying Condition With a Thermal Storage Material
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
7
), p.
074501
.
10.
Komolafe
,
C. A.
,
2023
, “
Numerical Simulation of the 3D Simultaneous Heat and Mass Transfer in a Forced Convection Solar Drying System Integrated With Thermal Storage Material
,”
ASME J. Sol. Energy Eng
,
145
(
5
), p.
051012
.
11.
Moorthy
,
S. N.
,
Sajeev
,
M. S.
, and
Anish
,
R. J.
,
2018
, “Functionality of Tuber Starches,” In
Starch in Food
,
M.
Sjoo
and
L.
Nilsson
, eds.,
Swaston, Cambridge, UK
, pp.
421
508
.
12.
Pangavhane
,
D. R.
,
Sawhney
,
R.
, and
Sarsavadia
,
P.
,
2002
, “
Design, Development and Performance Testing of a New Natural Convection Solar Dryer
,”
Energy
,
27
(
6
), pp.
579
590
.
13.
Simate
,
I.
,
2003
, “
Optimization of Mixed-Mode and Indirect-Mode Natural Convection Solar Dryers
,”
Renewable Energy
,
28
(
3
), pp.
435
453
.
14.
Hallak
,
H.
,
Hillal
,
J.
,
Hilal
,
F.
, and
Rahhal
,
R.
,
1996
, “
The Staircase Solar Dryer: Design and Characteristics
,”
Renewable Energy
,
7
(
2
), pp.
177
183
.
15.
Montero
,
I.
,
Blanco
,
J.
,
Miranda
,
T.
,
Rojas
,
S,A
, and
Celma
,
A. R.
,
2010
, “
Design, Construction and Performance Testing of a Solar Dryer for Agroindustrial by-Products
,”
Energy Conv. Manage.
,
51
(
7
), pp.
1510
1521
.
16.
Seveda
,
M.
,
2012
, “
Design and Development of Walk-in Type Hemicylindrical Solar Tunnel Dryer for Industrial Use
,”
Int. Scholarly Res. Not.
,
3
, pp.
1
8
.
17.
Tunde-Akintunde
,
T. Y.
,
2011
, “
Mathematical Modeling of Sun and Solar Drying of Chilli Pepper
,”
Renewable Energy
,
36
(
8
), pp.
2139
2145
.
18.
Basunia
,
M.
, and
Abe
,
T.
,
2001
, “
Thin-Layer Solar Drying Characteristics of Rough Rice Under Natural Convection
,”
J. Food Eng.
,
47
(
4
), pp.
295
301
.
19.
Duffy
,
A.
,
Rogers
,
M.
, and
Ayompe
,
L.
,
2005
,
Renewable Energy and Energy Efficiency: Assessment of Projects and Policies
,
John Wiley and Sons
,
West Sussex, UK
.
20.
Koua
,
K.B.
,
Fassinou
,
W.F.
,
Gbaha
,
P.
and
Toure
,
S.
,
2009
, “
Mathematical Modelling of the Thin Layer Solar Drying of Banana, Mango and Cassava
,”
Energy
,
34
(
10
), pp.
1594
1602
.
21.
Dairo
,
O. U.
,
Aderinlewo
,
A.
,
Johnson
,
A.
, and
Salaudeen
,
T.
,
2015
, “
Solar Drying Kinetics of Cassava Slices in a Mixed Flow Dryer
,”
Acta Technol. Agric.
,
18
(
4
), pp.
102
107
.
22.
Suherman
,
S.
,
Susanto
,
E. E.
,
Zardani
,
A. W.
,
Dewi
,
N. H. R.
, and
Hadiyanto
,
H.
,
2020
, “
Energy–Exergy Analysis and Mathematical Modeling of Cassava Starch Drying Using a Hybrid Solar Dryer
,”
Cogent Eng.
,
7
(
1
), p.
1771819
.
23.
Gilago
,
M. C.
,
Mugi
,
V. R.
, and
Chandramohan
,
V.
,
2023
, “
Evaluation of Drying Kinetics of Carrot and Thermal Characteristics of Natural and Forced Convection Indirect Solar Dryer
,”
Results Eng.
,
18
, p.
101196
.
24.
Jyoti
,
Y. K.
,
Dash
,
S. K.
,
Rayaguru
,
K.
,
Pal
,
U. S.
,
Mishra
,
N.
,
Ananth
,
P. N.
, and
Khandai
,
S.
,
2023
, “
Enhancement of Thermal and Techno-Economic Performance and Prediction of Drying Kinetics of Paddy Dried in Solar Bubble Dryer
,”
Energy Nexus
,
11
, p.
100224
.
25.
Kituu
,
G. M.
,
Shitanda
,
D.
,
Kanali
,
C. L.
,
Mailutha
,
J. T.
,
Njoroge
,
C. K.
,
Wainaina
,
J. K.
, and
Silayo
,
V. K.
,
2010
, “
Thin Layer Drying Model for Simulating the Drying of Tilapia Fish (Oreochromis niloticus) in a Solar Tunnel Dryer
,”
J. Food Eng.
,
98
(
3
), pp.
325
331
.
26.
Bahammou
,
Y.
,
Tagnamas
,
Z.
,
Lamharrar
,
A.
, and
Idlimam
,
A.
,
2019
, “
Thin-Layer Solar Drying Characteristics of Moroccan Horehound Leaves (Marrubium vulgare L.) Under Natural and Forced Convection Solar Drying
,”
Sol. Energy
,
188
, pp.
958
969
.
27.
Dissa
,
A.
,
Bathiebo
,
D. J.
,
Desmorieux
,
H.
,
Coulibaly
,
O.
, and
Koulidiati
,
J.
,
2011
, “
Experimental Characterisation and Modelling of Thin Layer Direct Solar Drying of Amelie and Brooks Mangoes
,”
Energy
,
36
(
5
), pp.
2517
2527
.
28.
Dissa
,
A.
,
Bathiebo
,
J.
,
Kam
,
S.
,
Savadogo
,
P. W.
,
Desmorieux
,
H.
, and
Koulidiati
,
J.
,
2009
, “
Modelling and Experimental Validation of Thin Layer Indirect Solar Drying of Mango Slices
,”
Renewable Energy
,
34
(
4
), pp.
1000
1008
.
29.
Asemu
,
A. M.
,
Habtu
,
N. G.
,
Delele
,
M. A.
,
Subramanyam
,
B.
, and
Alavi
,
S.
,
2020
, “
Drying Characteristics of Maize Grain in Solar Bubble Dryer
,”
J. Food Proc. Eng.
,
43
(
2
), p.
e13312
.
30.
Ayyappan
,
S.
, and
Mayilsamy
,
K.
,
2012
, “
Solar Tunnel Drier With Thermal Storage for Drying of Copra
,”
Int. J. Energy Tech. and Policy
,
8
(
1
), pp.
3
13
.
31.
Dina
,
S. F.
,
Ambarita
,
H.
,
Napitupulu
,
F. H.
, and
Kawai
,
H.
,
2015
, “
Study on Effectiveness of Continuous Solar Dryer Integrated With Desiccant Thermal Storage for Drying Cocoa Beans
,”
Case Stud. Therm. Eng.
,
5
, pp.
32
40
.
32.
Atalay
,
H.
,
2019
, “
Performance Analysis of a Solar Dryer Integrated With the Packed Bed Thermal Energy Storage (TES) System
,”
Energy
,
172
, pp.
1037
1052
.
33.
Shalaby
,
S.
,
Darwesh
,
M.
,
Ghoname
,
M. S.
,
Salah
,
S. E.
,
Nehela
,
Y.
, and
Fetouh
,
M. I.
,
2020
, “
The Effect of Drying Sweet Basil in an Indirect Solar Dryer Integrated With Phase Change Material on Essential Oil Valuable Components
,”
Energy Rep.
,
6
, pp.
43
50
.
34.
Lakshmi
,
D.
,
Muthukumar
,
P.
, and
Nayak
,
P. K.
,
2021
, “
Experimental Investigations on Active Solar Dryers Integrated With Thermal Storage for Drying of Black Pepper
,”
Renewable Energy
,
167
, pp.
728
739
.
35.
Gilago
,
M. C.
, and
Chandramohan
,
V.
,
2023
, “
Study of Drying Parameters of Pineapple and Performance of Indirect Solar Dryer Supported With Thermal Energy Storage: Comparing Passive and Active Modes
,”
J. Energy Storage
,
61
, p.
106810
.
36.
Bhardwaj
,
A.
,
Chauhan
,
R.
,
Kumar
,
R.
,
Sethi
,
M.
, and
Rana
,
A.
,
2017
, “
Experimental Investigation of an Indirect Solar Dryer Integrated With Phase Change Material for Drying Valeriana jatamansi (Medicinal Herb)
,”
Case Stud. Therm. Eng.
,
10
, pp.
302
314
.
37.
Vigneshkumar
,
N.
,
Venkatasudhahar
,
M.
,
Manoj Kumar
,
P.
,
Ramesh
,
A.
,
Subbiah
,
R.
,
Stalin
,
P. M. J.
,
Suresh
,
V.
, et al
,
2021
, “
Investigation on Indirect Solar Dryer for Drying Sliced Potatoes Using Phase Change Materials (PCM)
,”
Mater. Today: Proc.
,
47
, pp.
5233
5238
.
38.
Rakshamuthu
,
S.
,
Jegan
,
S.
,
Benyameen
,
J. J.
,
Selvakumar
,
V.
,
Anandeeswaran
,
K.
, and
Iyahraja
,
S.
,
2020
, “
Experimental Analysis of Small Size Solar Dryer With Phase Change Materials for Food Preservation
,”
J. Energy Storage
,
33
, p.
102095
.
39.
Ebrahimi
,
H.
,
Akhijahani
,
H. S.
, and
Salami
,
P.
,
2021
, “
Improving the Thermal Efficiency of a Solar Dryer Using Phase Change Materials at Different Position in the Collector
,”
Sol. Energy
,
220
, pp.
535
551
.
40.
Gilago
,
M. C.
, and
Chandramohan
,
V.P.
,
2022
, “
Performance Parameters Evaluation and Comparison of Passive and Active Indirect Type Solar Dryers Supported by Phase Change Material During Drying Ivy Gourd
,”
Energy
,
252
, p.
123998
.
41.
Lad
,
P.
,
Kumar
,
R.
,
Saxena
,
R.
, and
Patel
,
J.
,
2023
, “
Numerical Investigation of Phase Change Material Assisted Indirect Solar Dryer for Food Quality Preservation
,”
Int. J. Thermofluids
,
18
, p.
100305
.
42.
Dutta
,
P.
,
Dutta
,
P. P.
, and
Kalita
,
P.
,
2023
, “
Energy and Exergy Study of a Novel Multi-Mode Solar Dryer Without and With Sensible Heat Storage for Garcinia Pedunculata
,”
Energy Sources A: Recovery, Util Environ. Eff.
,
45
(
3
), pp.
9266
9282
.
43.
Zachariah
,
R.
,
Maatallah
,
T.
, and
Modi
,
A.
,
2020
, “
Environmental and Economic Analysis of a Photovoltaic Assisted Mixed Mode Solar Dryer With Thermal Energy Storage and Exhaust air Recirculation
,”
Int. J. Energy Research
,
45
(
3
), pp.
1
13
.
44.
Horwitz
,
W.
, and
Latimer
,
G.
,
2010
, “
Association of Official Analytical Chemists
,”
Official Methods of Analysis of the Association of Official Analytical Chemist
,
Gaithersburg, MD
,
2000
.
45.
Komolafe
,
C. A.
, and
Waheed
,
M. A.
,
2018
, “
Temperatures Dependent Drying Kinetics of Cocoa Beans Varieties in air-Ventilated Oven
,”
Front Heat Mass Transf.
,
12
, pp.
1
10
.
46.
Taghian Dinani
,
S.
,
Havet
,
M.
,
Hamdami
,
N.
, and
Shahedi
,
M.
,
2014
, “
Drying of Mushroom Slices Using Hot Air Combined With an Electrohydrodynamic (EHD) Drying System
,”
Dry. Tech.
,
32
(
5
), pp.
597
605
.
47.
Ndukwu
,
M. C.
,
Dirioha
,
C.
,
Abam
,
F. I.
, and
Ihediwa
,
V. E.
,
2017
, “
Heat and Mass Transfer Parameters in the Drying of Cocoyam Slice
,”
Case Stud. Therm. Eng.
,
9
, pp.
62
67
.
48.
Miller
,
W. M.
,
1985
, “
Prediction of Energy Requirements and Drying Times for Surface Drying Fresh Produce
,” American Society of Agricultural Engineer Paper No. 84-6542, pp.
87
90
.
49.
Camargo
,
J.
,
Ebinuma
,
C. D.
, and
Cardoso
,
S.
,
2003
, “
A Mathematical Model for Direct Evaporative Cooling Air Conditioning System
,”
Rev. Eng. Term.
,
2
(
2
), pp.
30
34
.
50.
Njie
,
D. N.
,
Rumsey
,
T. R.
, and
Singh
,
R. P.
,
1998
, “
Thermal Properties of Cassava, Yam and Plantain
,”
J. Food Eng.
,
37
(
1
), pp.
63
76
.
51.
Doymaz
,
I.
,
2004
, “
Convective Air Drying Characteristics of Thin Layer Carrots
,”
J. Food Eng.
,
61
(
3
), pp.
359
364
.
52.
Hii
,
C.
,
Law
,
C.
, and
Law
,
M.
,
2013
, “
Simulation of Heat and Mass Transfer of Cocoa Beans Under Stepwise Drying Conditions in a Heat Pump Dryer
,”
Appl., Therm. Eng.
,
54
(
1
), pp.
264
271
.
53.
Doymaz
,
I.
,
2012
, “
Air-Drying Characteristics, Effective Moisture Diffusivity and Activation Energy of Grape Leaves
,”
J. Food Proc. Preserv.
,
36
(
2
), pp.
161
168
.
54.
Roberts
,
J. S.
,
Kidd
,
D. R.
, and
Padilla-Zakour
,
O.
,
2008
, “
Drying Kinetics of Grape Seeds
,”
J. Food Eng.
,
89
(
4
), pp.
460
465
.
55.
Warji
,
W.
, and
Tamrin
,
T.
,
2021
, “
Hybrid Dryer of Cassava Chips
,”
IOP Conference Series: Earth and Environmental Science
,
IOP Publishing
.
56.
Madhankumar
,
S.
,
Viswanathan
,
K.
,
Wu
,
W.
, and
Taipabu
,
M. I.
,
2023
, “
Analysis of Indirect Solar Dryer With PCM Energy Storage Material: Energy, Economic, Drying and Optimization
,”
Sol. Energy
,
249
, pp.
667
683
.
57.
Abdelkader
,
T. K.
,
Salem
,
A. E.
,
Zhang
,
Y.
,
Gaballah
,
E. S.
,
Makram
,
S. O.
, and
Fan
,
Q.
,
2021
, “
Energy and Exergy Analysis of Carbon Nanotubes-Based Solar Dryer
,”
J. Energy Storage
,
39
, p.
102623
.
58.
Mugi
,
V. R.
, and
Chandramohan
,
V.
,
2021
, “
Energy and Exergy Analysis of Forced and Natural Convection Indirect Solar Dryers: Estimation of Exergy Inflow, Outflow, Losses, Exergy Efficiencies and Sustainability Indicators From Drying Experiments
,”
J. Cleaner Prod.
,
282
, p.
124421
.
59.
Vijayan
,
S.
,
Arjunan
,
T.
, and
Kumar
,
A.
, “
Exergo-Environmental Analysis of an Indirect Forced Convection Solar Dryer for Drying Bitter Gourd Slices
,”
Renewable Energy
,
146
, pp.
2210
2223
.
60.
Gilago
,
M. C.
,
Mugi
,
V. R.
, and
Chandramohan
,
V.
,
2023
, “
Evaluating the Environ-Economic and Exergy-Energy Impacts of Drying Carrots in Passive and Active Mode Solar Dryers
,”
Therm. Sci. Eng. Prog.
,
43
, p.
101956
.
61.
Toujani
,
M.
,
Hassini
,
L.
,
Azzouz
,
S.
, and
Belghith
,
A.
,
2013
, “
Experimental Study and Mathematical Modeling of Silverside Fish Convective Drying
,”
J. Food Proc. Preserv.
,
37
(
5
), pp.
930
938
.
62.
Famurewa
,
J.
, and
Emuekele
,
P.
,
2015
, “
Modelling of Drying Pattern of Cassava Chips at Different air Velocity and Temperature Using Fluidizied Bed Dryer
,”
Int. J. Agric. Sci.
,
5
(
3
), pp.
54
65
.
63.
Brahmi
,
F.
,
Mateos-Aparicio
,
I.
,
Mouhoubi
,
K.
,
Guemouni
,
S.
,
Sahki
,
T.
,
Dahmoune
,
F.
, and
Belmehdi
,
F.
,
2023
, “
Kinetic Modeling of Convective and Microwave Drying of Potato Peels and Their Effects on Antioxidant Content and Capacity
,”
Antioxidants
,
12
(
3
), p.
638
.
64.
Peleg
,
M.
,
1994
, “
A Mathematical Model of Crunchiness/Crispness Loss in Breakfast Cereals
,”
J. Texture Stud.
,
25
(
4
), pp.
403
410
.
65.
Mghazli
,
S.
,
Ouhammou
,
M.
,
Hidar
,
N.
,
Lahnine
,
L.
,
Idlimam
,
A.
, and
Mahrouz
,
M.
,
2017
, “
Drying Characteristics and Kinetics Solar Drying of Moroccan Rosemary Leaves
,”
Renewable Energy
,
108
, pp.
303
310
.
66.
Doymaz
,
I.
,
2005
, “
Sun Drying of Figs: An Experimental Study
,”
J. Food Eng.
,
71
(
4
), pp.
403
407
.
67.
Sacilik
,
K.
, and
Elicin
,
A. K.
,
2006
, “
The Thin Layer Drying Characteristics of Organic Apple Slices
,”
J. Food Eng.
,
73
(
3
), pp.
281
289
.
68.
Zogzas
,
N.
,
Maroulis
,
Z.
, and
Marinos-Kouris
,
D.
,
1996
, “
Moisture Diffusivity Data Compilation in Foodstuff
,”
Dry.Technol.
,
14
(
10
), pp.
2225
2253
.
69.
Akgun
,
N. A.
, and
Doymaz
,
I.
,
2004
, “
Modelling of Olive Cake Thin-Layer Drying Process
,”
J. Food Eng.
,
68
(
4
), pp.
455
461
.
70.
Verma
,
L. R.
,
Bucklin
,
R.
, and
Wratten
,
F. T.
,
1985
, “
Effects of Drying air Parameters on Rice Drying Models
,”
Trans. ASAE
,
28
(
1
), pp.
296
301
.
71.
Doymaz
,
I.
,
2009
, “
An Experimental Study on Drying of Green Apples
,”
Dry. Technol.
,
27
(
3
), pp.
478
485
.
72.
Midilli
,
A.
,
Kucuk
,
H.
, and
Yapar
,
Z.
,
2002
, “
A New Model for Single-Layer Drying
,”
Dry. Technol.
,
20
(
7
), pp.
1503
1513
.
73.
Wang
,
C.
, and
Singh
,
R.
,
1978
. “A Single Layer Drying Equation for Rough Rice," ASAE paper.
74.
Hii
,
C.
,
Law
,
C.
, and
Cloke
,
M.
,
2009
, “
Modeling Using a New Thin Layer Drying Model and Product Quality of Cocoa
,”
J. Food Eng.
,
90
(
2
), pp.
191
198
.
75.
Kaleta
,
A.
, and
Górnicki
,
K.
,
2010
, “
Evaluation of Drying Models of Apple (var. McIntosh) Dried in a Convective Dryer
,”
Int J. Food Sci. Technol
,
45
(
5
), pp.
891
898
.
76.
Madamba
,
P. S.
,
Driscoll
,
R. H.
, and
Buckle
,
K. A.
,
1996
, “
The Thin-Layer Drying Characteristics of Garlic Slices
,”
J. Food Eng.
,
29
(
1
), pp.
75
97
.
77.
Waewsak
,
J.
,
Chindaruksa
,
S.
, and
Punlek
,
C.
,
2006
, “
A Mathematical Modeling Study of Hot Air Drying for Some Agricultural Products
,”
Sci. Technol.
,
11
(
1
), pp.
14
20
.
78.
Goyalde
,
N. A.
,
Melo
,
E. D. C.
,
Rocha
,
R. P.
,
Goneli
,
A. L. D.
, and
Araújo
,
F. L.
,
2009
, “
Mathematical Modeling of the Drying Kinetics of Sugarcane Slices
,”
Rev. Bras. Prod. Agroindustriais
,
11
(
2
), pp.
117
121
.
79.
Zarein
,
M.
,
Samadi
,
S. H.
, and
Ghobadian
,
B.
,
2015
, “
Investigation of Microwave Dryer Effect on Energy Efficiency During Drying of Apple Slices
,”
J. Saudi Society Agric. Sci.
,
14
(
1
), pp.
41
47
.
You do not currently have access to this content.