Abstract

The present work aims to investigate the effect of inlet air cooling in conjunction with other input parameters on the exergetic performance of combined cycle power plants (CCPP). To mitigate the adverse effects of high ambient temperature on performance, the CCPP has been equipped with an inlet air cooler, which lowers the air temperature at the inlet of the compressor. Under a specific combination of input parameters, the analysis revealed a maximum increase in net specific work, efficiency, and exergetic efficiency of 14.16%, 3.93%, and 5.65%, respectively. Moreover, the effects of multiple input parameters were analyzed individually and in combination. This was done in order to identify the most influential exergy-affecting parameters for the CCPP, which turned out to be the degree of cooling, pressure ratio, and turbine inlet temperature. The simulated model is then subjected to two sets of multi-objective optimization using a genetic algorithm, considering the above parameters as design variables. According to the Pareto set of optimal solutions, cooling the inlet air by 16.5 K results in the highest net-specific work output and increased exergy destruction. Increased exergy destruction, on the other hand, is undesirable. However, if the cost of power per unit is high, this could be economically advantageous.

References

1.
Horlock
,
J. H.
,
1995
, “
Combined Power Plants—Past, Present, and Future
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
608
616
.
2.
Vandervort
,
C.
,
Leach
,
D.
,
Walker
,
D.
, and
Sasser
,
J.
, “
Commercialization and Fleet Experience of the 7/9HA Gas Turbine Combined Cycle
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers
, Paper No.
V003T008A006
.
3.
Boyce
,
M. P.
,
2012
, “20—Gas Turbine Performance Test,”
Gas Turbine Engineering Handbook
, 4th ed.,
M. P.
Boyce
, ed.,
Butterworth-Heinemann
,
Oxford
, pp.
769
802
.
4.
El Hadik
,
A. A.
,
1990
, “
The Impact of Atmospheric Conditions on Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
112
(
4
), pp.
590
596
.
5.
González-Díaz
,
A.
,
Alcaráz-Calderón
,
A. M.
,
González-Díaz
,
M. O.
,
Méndez-Aranda
,
Á
,
Lucquiaud
,
M.
, and
González-Santaló
,
J. M.
,
2017
, “
Effect of the Ambient Conditions on Gas Turbine Combined Cycle Power Plants With Post-Combustion CO2 Capture
,”
Energy
,
134
(
1
), pp.
221
233
.
6.
Kakaras
,
E.
,
Doukelis
,
A.
,
Prelipceanu
,
A.
, and
Karellas
,
S.
,
2005
, “
Inlet Air Cooling Methods for Gas Turbine Based Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
312
317
.
7.
Deng
,
C.
,
Al-Sammarraie
,
A. T.
,
Ibrahim
,
T. K.
,
Kosari
,
E.
,
Basrawi
,
F.
,
Ismail
,
F. B.
, and
Abdalla
,
A. N.
,
2020
, “
Air Cooling Techniques and Corresponding Impacts on Combined Cycle Power Plant (CCPP) Performance: A Review
,”
Int. J. Refrig.
,
120
(
1
), pp.
161
177
.
8.
Majdi Yazdi
,
M. R.
,
Ommi
,
F.
,
Ehyaei
,
M. A.
, and
Rosen
,
M. A.
,
2020
, “
Comparison of Gas Turbine Inlet Air Cooling Systems for Several Climates in Iran Using Energy, Exergy, Economic, and Environmental (4E) Analyses
,”
Energy Convers. Manage.
,
216
(
1
), p.
112944
.
9.
Ameri
,
M.
,
Shahbaziyan
,
H.
, and
Hosseinzadeh
,
H.
, “
The Study of the Effects of Gas Turbine Inlet Air Cooling on the Heat Recovery Boiler Performance
,”
Proceedings of the ASME Seventh Biennial Conference on Engineering Systems Design and Analysis
,
Manchester, UK
,
July 19–22
, pp.
915
920
.
10.
Agarwal
,
S.
,
Gupta
,
D.
,
Dandotiya
,
D.
, and
Banker
,
N. D.
, “
Energy and Exergy Analysis of a Gas Turbine Power Plant Integrated With Vapor Adsorption Refrigeration System
,”
Proceedings of the ASME 2019 Gas Turbine India Conference
, Paper No. V001T03A012.
11.
Ibrahim
,
T. K.
,
Rahman
,
M. M.
, and
Abdalla
,
A. N.
,
2011
, “
Improvement of Gas Turbine Performance Based on Inlet Air Cooling Systems: A Technical Review
,”
Int. J. Phys. Sci.
,
6
(
4
), pp.
620
627
.
12.
Talukdar
,
K.
, and
Gogoi
,
T. K.
,
2016
, “
Exergy Analysis of a Combined Vapor Power Cycle and Boiler Flue Gas Driven Double Effect Water–LiBr Absorption Refrigeration System
,”
Energy Convers. Manage.
,
108
(
1
), pp.
468
477
.
13.
Xu
,
Y.
,
Zhang
,
S.
, and
Xiao
,
Y.
,
2016
, “
Modeling the Dynamic Simulation and Control of a Single Effect LiBr–H2O Absorption Chiller
,”
Appl. Therm. Eng.
,
107
(
1
), pp.
1183
1191
.
14.
Parham
,
K.
,
Khamooshi
,
M.
,
Tematio
,
D. B. K.
,
Yari
,
M.
, and
Atikol
,
U.
,
2014
, “
Absorption Heat Transformers—A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
34
(
1
), pp.
430
452
.
15.
Baniyounes
,
A. M.
,
Ghadi
,
Y. Y.
,
Rasul
,
M. G.
, and
Khan
,
M. M. K.
,
2013
, “
An Overview of Solar Assisted Air Conditioning in Queensland's Subtropical Regions, Australia
,”
Renew. Sustain. Energy Rev.
,
26
(
1
), pp.
781
804
.
16.
Almajali
,
M. R.
, and
Quran
,
O. A. S.
,
2021
, “
Parametric Study on the Performance of Combined Power Plant of Steam and Gas Turbines
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051006
.
17.
Shireef
,
L. T.
, and
Ibrahim
,
T. K.
,
2022
, “
Influence of Operating Parameters on the Performance of Combined Cycle Based on Exergy Analysis
,”
Case Studies Therm. Eng.
,
40
(
1
), p.
102506
.
18.
Deb
,
K.
,
2005
, “Multi-Objective Optimization,”
Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques
,
E. K.
Burke
, and
G.
Kendall
, eds.,
Springer US
,
Boston, MA
, pp.
273
316
.
19.
Bejan
,
A.
,
2002
, “
Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture
,”
Int. J. Energy Res.
,
26
(
7
), pp.
1
43
.
20.
Kotas
,
T. J.
,
2012
,
The Exergy Method of Thermal Plant Analysis
,
Paragon Publishing
,
Northampton, UK
.
21.
Ahmadi
,
P.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2011
, “
Exergy, Exergoeconomic and Environmental Analyses and Evolutionary Algorithm Based Multi-Objective Optimization of Combined Cycle Power Plants
,”
Energy
,
36
(
10
), pp.
5886
5898
.
22.
Dincer
,
I.
, and
Cengel
,
Y. A. J. E.
,
2001
, “
Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering
,”
Entropy
,
3
(
3
), pp.
116
149
.
23.
Sonntag
,
R. E.
,
Borgnakke
,
C.
,
Van Wylen
,
G. J.
, and
Van Wyk
,
S.
,
1998
,
Fundamentals of Thermodynamics
,
Wiley
,
New York
.
24.
Boyce
,
M. P.
,
2010
,
Handbook for Cogeneration and Combined Cycle Power Plants
, 2nd ed.,
ASME Press
,
New York
.
25.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1995
,
Thermal Design and Optimization
,
John Wiley & Sons
,
New York
.
26.
Holland
,
J. H.
,
1992
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
,
MIT Press
,
Cambridge, MA
.
27.
Konak
,
A.
,
Coit
,
D. W.
, and
Smith
,
A. E.
,
2006
, “
Multi-Objective Optimization Using Genetic Algorithms: A Tutorial
,”
Reliab. Eng. Syst. Saf.
,
91
(
9
), pp.
992
1007
.
You do not currently have access to this content.