Abstract

Solar-driven thermochemical energy storage systems are proven to be promising energy carriers (solar fuels) to utilize solar energy by using reactive solid-state pellets. However, the production of solar fuel requires a quasi-steady-state process temperature, which represents the main challenge due to the transient nature of solar power. In this work, an adaptive model predictive controller (MPC) is presented to regulate the temperature inside a tubular solar reactor to produce solid-state solar fuel for long-term thermal storage systems. The solar reactor system consists of a vertical tube heated circumferentially over a segment of its length by concentrated solar power, and the reactive pellets (MgMn2O4) are fed from the top end and flow downwards through the heated tube. A countercurrent flowing gas supplied from the lower end interacts with flowing pellets to reduce it thermochemically at a temperature range of 1000—1500 °C. A low-order physical model was developed to simulate the dynamics of the solar reactor including the reaction kinetics, and the proposed model was validated numerically by using a 7-kW electric furnace. The numerical model then was utilized to design the MPC controller, where the control system consists of an MPC code linked to an adaptive system identification code that updates system parameters online to ensure system robustness against external disturbances (sudden change in the flow inside the reactor), model mismatches, and uncertainty. The MPC controller parameters are tuned to enhance the system performance with minimum steady-state error and overshoot. The controller is tested to track different temperature ranges between 500 °C and 1400 °C with different particles/gas mass flowrates and ramping temperature profiles. Results show that the MPC controller successfully regulated the reactor temperature within ± 1 °C of its setpoint and maintained robust performance with minimum input effort when subjected to sudden changes in the amount of flowing media and the presence of chemical reaction.

References

1.
Azad Gilani
,
H.
, and
Hoseinzadeh
,
S.
,
2021
, “
Techno-economic Study of Compound Parabolic Collector in Solar Water Heating System in the Northern Hemisphere
,”
Appl. Therm. Eng.
,
190
, p.
116756
.
2.
Nyarko
,
F. K. A.
,
Takyi
,
G.
, and
Amalu
,
E. H.
,
2020
, “
Robust Crystalline Silicon Photovoltaic Module (c-Si PVM) for the Tropical Climate: Future Facing the Technology
,”
Sci. African
,
8
, p.
e00359
.
3.
Chen
,
Y.
,
Liu
,
Y.
,
Wang
,
F.
,
Guan
,
X.
, and
Guo
,
L.
,
2021
, “
Toward Practical Photoelectrochemical Water Splitting and CO2 Reduction Using Earth-Abundant Materials
,”
J. Energy Chem.
,
61
, pp.
469
488
.
4.
Pang
,
H.
,
Yang
,
G.
,
Li
,
P.
,
Huang
,
H.
,
Ichihara
,
F.
,
Takei
,
T.
, and
Ye
,
J.
,
2020
, “
Wafer-Scale Si Nanoconed Arrays Induced Syngas in the Photoelectrochemical CO2 Reduction
,”
Catal. Today
,
339
, pp.
321
327
.
5.
Wang
,
Y.
,
Wang
,
H.
, and
He
,
T.
,
2021
, “
Study on Nanoporous CuBi2O4 Photocathode Coated With TiO2 Overlayer for Photoelectrochemical CO2 Reduction
,”
Chemosphere
,
264
, p.
128508
.
6.
Han
,
N.
, and
Ho
,
J. C.
,
2014
, “3—One-Dimensional Nanomaterials for Energy Applications,”
Nanocrystalline Materials (Second Edition)
,
S-C
Tjong
, ed.,
Elsevier
,
Oxford
, pp.
75
120
7.
Li
,
W.
,
Klemeš
,
J. J.
,
Wang
,
Q.
, and
Zeng
,
M.
,
2022
, “
Salt Hydrate–Based Gas-Solid Thermochemical Energy Storage: Current Progress, Challenges, and Perspectives
,”
Renew. Sustain. Energy Rev.
,
154
, p.
111846
.
8.
Fahim
,
M. A.
, and
Ford
,
J. D.
,
1983
, “
Energy Storage Using the BaO2BaO Reaction Cycle
,”
Chem. Eng. J
,
27
(
1
), pp.
21
28
.
9.
Bayon
,
A.
,
Bader
,
R.
,
Jafarian
,
M.
,
Fedunik-Hofman
,
L.
,
Sun
,
Y.
,
Hinkley
,
J.
,
Miller
,
S.
, and
Lipiński
,
W.
,
2018
, “
Techno-economic Assessment of Solid–Gas Thermochemical Energy Storage Systems for Solar Thermal Power Applications
,”
Energy
,
149
, pp.
473
484
.
10.
Hutchings
,
K. N.
,
Wilson
,
M.
,
Larsen
,
P. A.
, and
Cutler
,
R. A.
,
2006
, “
Kinetic and Thermodynamic Considerations for Oxygen Absorption/Desorption Using Cobalt Oxide
,”
Solid State Ionics
,
177
(
1–2
), pp.
45
51
.
11.
Karagiannakis
,
G.
,
Pagkoura
,
C.
,
Halevas
,
E.
,
Baltzopoulou
,
P.
, and
Konstandopoulos
,
A. G.
,
2016
, “
Cobalt/Cobaltous Oxide Based Honeycombs for Thermochemical Heat Storage in Future Concentrated Solar Power Installations: Multi-cyclic Assessment and Semi-quantitative Heat Effects Estimations
,”
Sol. Energy
,
133
, pp.
394
407
.
12.
Randhir
,
K.
,
King
,
K.
,
Rhodes
,
N.
,
Li
,
L.
,
Hahn
,
D.
,
Mei
,
R.
,
AuYeung
,
N.
, and
Klausner
,
J.
,
2019
, “
Magnesium-Manganese Oxides for High Temperature Thermochemical Energy Storage
,”
J. Energy Storage
,
21
, pp.
599
610
.
13.
Abuseada
,
M.
, and
Ozalp
,
N.
,
2020
, “
Experimental and Numerical Study on a Novel Energy Efficient Variable Aperture Mechanism for a Solar Receiver
,”
Sol. Energy
,
197
, pp.
396
410
.
14.
Petrasch
,
J.
,
Osch
,
P.
, and
Steinfeld
,
A.
,
2009
, “
Dynamics and Control of Solar Thermochemical Reactors
,”
Chem. Eng. J.
,
145
(
3
), pp.
362
370
.
15.
AlSahlani
,
A.
,
Randhir
,
K.
,
Ozalp
,
N.
, and
Klausner
,
J.
,
2022
, “
A Forward Feedback Control Scheme for a Solar Thermochemical Moving Bed Counter-current Flow Reactor
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
031004
.
16.
Abedini Najafabadi
,
H.
, and
Ozalp
,
N.
,
2018
, “
Aperture Size Adjustment Using Model Based Adaptive Control Strategy to Regulate Temperature in a Solar Receiver
,”
Sol. Energy
,
159
, pp.
20
36
.
17.
Al Sahlani
,
A.
,
Randhir
,
K.
,
Ozalp
,
N.
, and
Klausner
,
J.
,
2022
, “
A Simplified Numerical Approach to Characterize the Thermal Response of a Moving Bed Solar Reactor
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
8
), p.
081010
.
18.
Randhir
,
K.
,
King
,
K.
,
Rhodes
,
N.
,
Li
,
L.
,
Hahn
,
D.
,
Mei
,
R.
,
AuYeung
,
N.
, and
Klausner
,
J.
,
2022
, “
A Continuum Model for Heat and Mass Transfer in Moving-Bed Reactors for Thermochemical Energy Storage
,”
Appl. Energy
,
313
, p.
118842
.
19.
Hayes
,
M.
,
Masoomi
,
F.
,
Schimmels
,
P.
,
Randhir
,
K.
,
Klausner
,
J.
, and
Petrasch
,
J.
,
2021
, “
Ultra-high Temperature Thermal Conductivity Measurements of a Reactive Magnesium Manganese Oxide Porous Bed Using a Transient Hot Wire Method
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
10
), p.
104502
.
20.
Wen
,
D.
, and
Ding
,
Y.
,
2006
, “
Heat Transfer of Gas Flow Through a Packed Bed
,”
Chem. Eng. Sci.
,
61
(
11
), pp.
3532
3542
.
21.
Huang
,
W.
,
Korba
,
D.
,
Randhir
,
K.
,
Petrasch
,
J.
,
Klausner
,
J.
,
AuYeung
,
N.
, and
Li
,
L.
,
2022
, “
Thermochemical Reduction Modeling in a High-Temperature Moving-Bed Reactor for Energy Storage: 1D Model
,”
Appl. Energy
,
306
, p.
118009
.
22.
Stenberg
,
V.
,
Sköldberg
,
V.
,
Öhrby
,
L.
, and
Rydén
,
M.
,
2019
, “
Evaluation of Bed-to-Tube Surface Heat Transfer Coefficient for a Horizontal Tube in Bubbling Fluidized Bed at High Temperature
,”
Powder Technol.
,
352
, pp.
488
500
.
23.
Touloukian
,
Y. S.
, and
Buyco
,
E. H.
,
1970
,
Specific Heat: Nonmetallic Solids
,
IFI/Plenum
,
New York
.
24.
Abuseada
,
M.
, and
Ozalp
,
N.
,
2020
, “
Experimental and Numerical Study on Heat Transfer Driven Dynamics and Control of Transient Variations in a Solar Receiver
,”
Sol. Energy
,
211
, pp.
700
711
.
25.
Camacho
,
E. F.
, and
Alba
,
C. B.
,
2013
,
Model Predictive Control
,
Springer
,
London
.
You do not currently have access to this content.