Abstract

Based on a combined-hole design, a novel hole arrangement was proposed and tested on a flat plate model by numerical simulation. Replacing one row in two rows of staggered holes with a row of smaller holes, the bigger holes in one row and smaller holes in the other row will form combined-hole units. The kidney–vortex pairs in the combined-hole unit will interact with each other and get weakened, finally enhancing film cooling performance. Compared to the original two rows of staggered holes, the coolant mass flowrate will be reduced by 25% for the new hole arrangements. Results show that the area-averaged film cooling effectiveness of the new arrangements is similar or even higher than that of the original one at different blowing ratios. Replacing the second row of holes with smaller holes provide better cooling performance than replacing the first row of holes. The overall film cooling performance is not sensitive to the row space. The highest improvement of film cooling effectiveness is 24% when the blowing ratio is 1. However, as the coolant accumulation and reattachment phenomenon is weakened by the new arrangements, the film cooling performance is not as good as the original one when the blowing ratio is 1.5.

References

1.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
AIAA J. Propuls. Power
,
22
(
2
), pp.
249
270
.
3.
Pabbisetty
,
M. R.
, and
Prasad
,
B.
,
2021
, “
Effect of Blowing Ratio on Mist-Assisted Air Film Cooling of a Flat Plate: an Experimental Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031016
.
4.
Liu
,
K.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Influence of Coolant Density on Turbine Platform Film-Cooling With Stator-Rotor Purge Flow and Compound-Angle Holes
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041007
.
5.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Freestream Turbulence Intensity on Film Cooling Jet Structure and Surface Effectiveness Using PIV and PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041023
.
6.
Sperling
,
S. J.
, and
Mathison
,
R. M.
,
2022
, “
Time-Accurate Evaluation of Film Cooling Jet Characteristics for Plenum and Crossflow Coolant Supplies
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
4
), p.
041007
.
7.
Liu
,
C. L.
,
Li
,
B. R.
,
Ye
,
L.
,
Zhu
,
H. R.
,
Zhang
,
C. X.
, and
Song
,
W.
,
2021
, “
Film Cooling Characteristics of Cross-Flow Coolant Passage With Various Relative Positions of Holes and Inclined Ribs
,”
Int. J. Therm. Sci.
,
167
, p.
106975
.
8.
Colban
,
W.
,
Gratton
,
A.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2006
, “
Heat Transfer and Film-Cooling Measurements on a Stator Vane With Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
128
(
1
), pp.
53
61
.
9.
Xue
,
S.
,
Arisi
,
A.
, and
Ng
,
W.
,
2015
, “
Experimental and Numerical Investigations of Shock-Film Cooling Interaction on a Turbine Blade With Fan-Shaped Cooling Holes
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
044502
.
10.
Zhang
,
Y.
,
Li
,
Y. F.
,
Bian
,
X. T.
, and
Yuan
,
X.
,
2019
, “
Effects of Inlet Swirl on Pressure Side Film Cooling of Neighboring Vane Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061008
.
11.
Haider
,
N.
,
Saha
,
A. K.
, and
Panigrahi
,
P. K.
,
2021
, “
Enhancement in Film Cooling Effectiveness Using Delta Winglet Pair
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051026
.
12.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.
13.
Wang
,
C.
,
Zhang
,
J.
, and
Zhou
,
J.
,
2016
, “
Optimization of a fan-Shaped Hole to Improve Film Cooling Performance by RBF Neural Network and Genetic Algorithm
,”
Aerosp. Sci. Technol.
,
58
, pp.
18
25
.
14.
Zhang
,
X. Z.
, and
Hassan
,
I.
,
2006
, “
Film Cooling Effectiveness for an Advanced-Louver Cooling Scheme for Gas Turbines
,”
AIAA J. Thermophys. Heat Transfer
,
20
(
4
), pp.
754
763
.
15.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
16.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
461
471
.
17.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.
18.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Study on Improving Large Angle Film Cooling Performance Through the Use of Sister Holes
,”
Numer. Heat Transfer A: Appl.
,
55
(
7
), pp.
634
653
.
19.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2007
, “
A Novel Anti-Vortex Turbine Film Cooling Hole Concept
,”
Proceedings of the ASME Turbo Expo 2007
,
Montreal, Canada
,
May 14–17
, pp.
487
496
.
20.
Li
,
H.
,
Zhou
,
Z.
,
Xie
,
G.
,
Xia
,
S.
, and
Tao
,
Z.
,
2021
, “
The Cooling Performance of Multiple Rows of Film Holes on the Suction Surface of a Turbine Blade Under Rotating Conditions
,”
Appl. Therm. Eng.
,
188
, p.
116125
.
21.
Wang
,
L.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2020
, “
The Interaction Between Upstream and Downstream Film Cooling Rows in Flow Field and Heat Transfer
,”
Int. J. Therm. Sci.
,
149
, p.
106176
.
22.
Xie
,
G.
,
Sundén
,
B.
,
Liu
,
J.
, and
Zhang
,
G.
,
2020
, “
Improvements of the Adiabatic Film Cooling by Using Two-Row Holes of Different Geometries and Arrangements
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122101
.
23.
Jindal
,
P.
,
Agarwal
,
S.
,
Sharma
,
R. P.
, and
Roy
,
A. K.
,
2017
, “
Numerical Investigation of Film Cooling Enhancement Using Staggered Row Mixed Hole Arrangements
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021007
.
24.
Yang
,
C.
, and
Zhang
,
J.
,
2012
, “
Influence of Multi-Hole Arrangement on Cooling Film Development
,”
Chin. J. Aeronaut.
,
25
(
2
), pp.
182
188
.
25.
Zhu
,
R.
,
Terrence
,
S.
,
Li
,
S.
, and
Xie
,
G.
,
2022
, “
Film Cooling Performance and Flow Structure of Single-Hole and Double-Holes With Swirling Jet
,”
Chin. J. Aeronaut.
,
35
(
3
), pp.
201
213
.
26.
Zhu
,
R.
,
Lin
,
E.
,
Simon
,
T.
, and
Xie
,
G.
,
2021
, “
An Experimental Study of Sister Holes Film Cooling With Various Secondary-to-Primary Hole Diameter Ratios
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
1
), p.
012301
.
27.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Evaluation on the Effect of Sister Holes on Film Cooling Effectiveness and the Surrounding Flow Field
,”
Heat Mass Transfer
,
45
(
11
), pp.
1435
1446
.
28.
Khajehhasani
,
S.
, and
Jubran
,
B. A.
,
2016
, “
A Numerical Investigation of Film Cooling Performance Through Variations in the Location of Discrete Sister Holes
,”
Appl. Therm. Eng.
,
107
, pp.
345
364
.
You do not currently have access to this content.