Abstract

The laminated cooling is believed to be a promising cooling scheme for the next generation of advanced gas turbines. In order to build a cooling system with high performance, it is necessary to develop a more revolutionary cooling configuration for hot components in gas turbines. In this study, a novel laminated cooling configuration with cellular partition has been proposed. The local/average heat transfer parameters and pressure loss coefficient have been evaluated by comparing with traditional laminated cooling configurations with and without circular pin. Different adiabatic and conjugate cooling configurations are explored numerically to investigate the external film coverage and internal heat transfer. Seven different flow conditions with blowing ratios ranging from 0.2 to 1.4 are investigated for all numerical models. Results indicate that the novel laminated cooling configuration exhibits a higher cooling advantage. With the blowing ratios investigated, the cooling effectiveness of laminated cooling configuration with cellular partition increased by 4.5–13.4% and 10.8–23.4% compared with the cases with and without circular pin, respectively. With higher cooling performance, the pressure loss coefficient only increased by 4.4%. Two mechanisms have been identified for heat transfer enhancement of the novel laminated cooling configuration: (1) the cellular partition increases the transverse diffusion of film cooling outflow resulting in an increased external film cooling effectiveness and (2) the film hole area and partition area have been increased in the new structure, which enhances the internal heat transfer. The proposed structure has the potential for cooling the high-pressure turbines in the future.

References

1.
Li
,
W.
,
Lu
,
X.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2018
. “
On Improving Full-Coverage Effusion Cooling Efficiency by Varying Cooling Arrangements and Wall Thickness in Double Wall Cooling Application
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Vol. 5A: Heat Transfer
,
Oslo, Norway
,
June 11–15
, ASME, Paper No.
V05AT10A007
.
2.
Clifford
,
R.
,
1985
, “
Rotating Heat Transfer Investigations on a Multi-Pass Cooling Geometry
,”
AGARD Conference Proceedings No. 390: Heat Transfer and Cooling in Gas Turbines
,
Bergen, Norway
,
May 6–10
.
3.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
4.
Bunker
,
R. S.
,
2006
, “
Gas Turbine Heat Transfer: 10 Remaining Hot Gas Path Challenges
,”
Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Vol. 3: Heat Transfer, Parts A and B
,
Barcelona, Spain
,
May 8–11
, ASME, pp.
1
14
.
5.
Wang
,
C.-C.
, and
Roy
,
S.
,
2008
, “
Electrodynamic Enhancement of Film Cooling of Turbine Blades
,”
J. Appl. Phys.
,
104
(
7
), p.
073305
.
6.
Wang
,
L.
,
Li
,
N.
, and
Xu
,
X.
,
2009
, “
The Research of Display System for Surface Surveillance Radar
,”
2009 Fourth International Conference on Computer Science & Education
,
Washington, DC
,
Dec. 17–19
, pp.
679
682
.
7.
Wang
,
Z.
, and
Liu
,
Z.
,
2010
, “
Graph-Based Chinese Text Categorization
,”
2010 International Conference on Electrical and Control Engineering
,
Wuhan, China
,
June 25–27
, pp.
1092
1095
.
8.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2006
, “
Effect of Jet Pulsation and Duty Cycle on Film Cooling From a Single Jet on a Leading Edge Model
,”
ASME J. Turbomach.
,
128
(
3
), pp.
564
571
.
9.
Nikitopoulos
,
D. E.
,
Acharya
,
S.
,
Oertling
,
J.
, and
Muldoon
,
F. H.
,
2006
, “
On Active Control of Film-Cooling Flows
,”
Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Vol. 3: Heat Transfer, Parts A and B
,
Barcelona, Spain
,
May 8–11
, ASME, pp.
61
69
.
10.
Ou
,
S.
, and
Rivir
,
R. B.
,
2006
, “
Shaped-Hole Film Cooling With Pulsed Secondary Flow
,”
Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Vol. 3: Heat Transfer, Parts A and B
,
Barcelona, Spain
,
May 8–11
,
ASME
, pp.
259
269
.
11.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
1999
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
2
), pp.
224
232
.
12.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.
13.
Wei
,
H.
,
Zu
,
Y. Q.
,
Ai
,
J. L.
, and
Ding
,
L.
,
2019
, “
Experimental Study on the Full-Coverage Film Cooling of Fan-Shaped Holes With a Constant Exit Width
,”
Int. J. Heat Mass Transfer
,
140
, pp.
379
398
.
14.
Wei
,
H.
,
Ai
,
J. L.
,
Zu
,
Y. Q.
, and
Ding
,
L.
,
2019
, “
Heat Transfer Characteristics of Fan-Shaped Hole Effusion Cooling for a Constant Hole Exit Width—Numerical Simulation and Experimental Validation
,”
Appl. Therm. Eng.
,
160
, p.
113978
.
15.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2007
, “
The Effect of an Upstream Ramp on Cylindrical and Fan-Shaped Hole Film Cooling: Part I—Aerodynamic Results
,”
Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Vol. 4: Turbo Expo 2007, Parts A and B
,
Montreal, Canada
,
May 14–17
, ASME, pp.
105
113
.
16.
Chen
,
S. P.
,
Chyu
,
M. K.
, and
Shih
,
T. I. P.
,
2011
, “
Effects of Upstream Ramp on the Performance of Film Cooling
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1085
1094
.
17.
Kistenmacher
,
D. A.
,
Todd Davidson
,
F.
, and
Bogard
,
D. G.
,
2014
, “
Realistic Trench Film Cooling With a Thermal Barrier Coating and Deposition
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, Vol. 3B: Heat Transfer
,
San Antonio, TX,
June 3–7
, ASME, Paper No.
V03BT13A057
.
18.
Bunker
,
R. S.
,
2010
, “
Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
Heat Transfer Res.
,
41
(
6
), pp.
627
650
.
19.
Hou
,
R.
,
Wen
,
F.
,
Luo
,
Y.
,
Tang
,
X.
, and
Wang
,
S.
,
2019
, “
Large Eddy Simulation of Film Cooling Flow From Round and Trenched Holes
,”
Int. J. Heat Mass Transfer
,
144
, p.
118631
.
20.
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2008
, “
Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air, Vol. 4: Heat Transfer, Parts A and B
,
Berlin, Germany
,
June 9–13
, ASME, pp.
1161
1174
.
21.
Titchener
,
N.
, and
Babinsky
,
H.
,
2015
, “
A Review of the Use of Vortex Generators for Mitigating Shock-Induced Separation
,”
Shock Waves
,
25
(
5
), pp.
473
494
.
22.
Wang
,
Y.
,
Wang
,
W.
,
Tao
,
G.
,
Li
,
H.
,
Zheng
,
Y.
, and
Cui
,
J.
,
2022
, “
Optimization of the Semi-Sphere Vortex Generator for Film Cooling Using Generative Adversarial Network
,”
Int. J. Heat Mass Transfer
,
183
, p.
122026
.
23.
Kim
,
J. E.
,
Doo
,
J. H.
,
Ha
,
M. Y.
,
Yoon
,
H. S.
, and
Son
,
C.
,
2012
, “
Numerical Study on Characteristics of Flow and Heat Transfer in a Cooling Passage With Protrusion-in-Dimple Surface
,”
Int. J. Heat Mass Transfer
,
55
(
23
), pp.
7257
7267
.
24.
Zhang
,
P.
,
Rao
,
Y.
,
Xie
,
Y.
, and
Zhang
,
M.
,
2021
, “
Turbulent Flow Structure and Heat Transfer Mechanisms Over Surface Vortex Structures of Micro V-Shaped Ribs and Dimples
,”
Int. J. Heat Mass Transfer
,
178
, p.
121611
.
25.
Rao
,
Y.
,
Chen
,
P.
, and
Wan
,
C.
,
2016
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on the Surface With Micro W-Shaped Ribs
,”
Int. J. Heat Mass Transfer
,
93
, pp.
683
694
.
26.
Caliskan
,
S.
, and
Baskaya
,
S.
,
2012
, “
Experimental Investigation of Impinging Jet Array Heat Transfer From a Surface With V-Shaped and Convergent-Divergent Ribs
,”
Int. J. Therm. Sci.
,
59
, pp.
234
246
.
27.
Miller
,
N.
,
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2013
, “
Effects of Jet Diameter and Surface Roughness on Internal Cooling With Single Array of Jets
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, Vol. 3A: Heat Transfer
,
San Antonio, TX,
June 3–7,
ASME, Paper No.
V03AT12A038
.
28.
Singh
,
P.
,
Li
,
W.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2017
, “
A New Cooling Design for Rib Roughened Two-Pass Channel Having Positive Effects of Rotation on Heat Transfer Enhancement on Both Pressure and Suction Side Internal Walls of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
115
, pp.
6
20
.
29.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.
30.
Luo
,
J.
,
Rao
,
Y.
,
Yang
,
L.
,
Yang
,
M.
, and
Su
,
H.
,
2021
, “
Computational Analysis of Turbulent Flow and Heat Transfer in Latticework Cooling Structures Under Various Flow Configurations
,”
Int. J. Therm. Sci.
,
164
, p.
106912
.
31.
Zhang
,
X.-D.
,
Liu
,
J.-J.
, and
An
,
B.-T.
,
2019
, “
The Investigations of Slot Film Outflow Used on the Laminated Cooling Configuration
,”
Int. J. Heat Mass Transfer
,
141
, pp.
1078
1086
.
32.
Colladay
,
R.
,
1972
. “Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications,”
National Aeronautics and Space Administration
.
33.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Hussain
,
C. I.
,
Mkpadi
,
M. C.
, and
Nazari
,
A.
,
1988
, “
Impingement/Effusion Cooling: Overall Wall Heat Transfer
,”
Proceedings of the ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition, Vol. 4: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Amsterdam, The Netherlands
,
June 6–9
, ASME, Paper No.
V004T09A036
.
34.
Andrews
,
G.
,
Aldabagh
,
A.
,
Asere
,
A.
,
Bazdidi-Tehrani
,
F.
,
Mkpadi
,
M.
, and
Nazari
,
A.
,
1993
, “
Impingement/Effusion Cooling
,”
AGARD Propulsion and Energetics Panel, 80th Symposium on Heat Transfer and Cooling in Gas Turbines
,
Antalya, Turkey
,
Oct. 12–16
, pp. 30.1–30.10.
35.
Chen
,
G.
,
Liu
,
Y.
,
Rao
,
Y.
,
He
,
J.
, and
Qu
,
Y.
,
2019
, “
Numerical Investigation on Conjugate Heat Transfer of Impingement/Effusion Double-Wall Cooling With Different Crossflow Schemes
,”
Appl. Therm. Eng.
,
155
, pp.
515
524
.
36.
Rao
,
Y.
,
Liu
,
Y.
, and
Wan
,
C.
,
2018
, “
Multiple-Jet Impingement Heat Transfer in Double-Wall Cooling Structures With Pin Fins and Effusion Holes
,”
Int. J. Therm. Sci.
,
133
, pp.
106
119
.
37.
Nealy
,
D. A.
, and
Reider
,
S. B.
,
1980
, “
Evaluation of Laminated Porous Wall Materials for Combustor Liner Cooling
,”
ASME J. Eng. Power
,
102
(
2
), pp.
268
276
.
38.
Kim
,
S. H.
,
Ahn
,
K. H.
,
Jung
,
E. Y.
,
Park
,
J. S.
,
Hwang
,
K.-Y.
, and
Cho
,
H.-H.
,
2014
, “
Total Cooling Effectiveness on Laminated Multilayer for Impingement/Effusion Cooling System
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Vol. 5B: Heat Transfer
,
Düsseldorf, Germany
,
June 16–20
, ASME, Paper No.
V05BT13A050
.
39.
Chen
,
Y.
,
Wei
,
H.
, and
Zu
,
Y. Q.
,
2018
, “
Experimental Study on the Conjugate Heat Transfer of Double-Wall Turbine Blade Components With/Without Pins
,”
Ther. Sci. Eng. Prog.
,
8
, pp.
448
456
.
40.
Hong
,
S. K.
,
Lee
,
D. H.
,
Cho
,
H. H.
, and
Rhee
,
D.-H.
,
2010
, “
Local Heat/Mass Transfer Measurements on Effusion Plates in Impingement/Effusion Cooling With Rotation
,”
Int. J. Heat Mass Transfer
,
53
(
7
), pp.
1373
1379
.
41.
Hong
,
S. K.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2009
, “
Heat/Mass Transfer in Rotating Impingement/Effusion Cooling WithR Turbulators
,”
Int. J. Heat Mass Transfer
,
52
(
13
), pp.
3109
3117
.
42.
Hong
,
S. K.
,
Rhee
,
D.-H.
, and
Cho
,
H. H.
,
2005
, “
Effects of Fin Shapes and Arrangements on Heat Transfer for Impingement/Effusion Cooling With Crossflow
,”
Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Vol. 3: Turbo Expo 2005, Parts A and B
,
Reno, NV
,
June 6–9
, ASME, pp.
1325
1337
.
43.
Hong
,
S. K.
,
Rhee
,
D.-H.
, and
Cho
,
H. H.
,
2006
, “
Heat/Mass Transfer With Circular Pin Fins in Impingement/Effusion Cooling System With Crossflow
,”
J. Thermophys. Heat Transfer
,
20
(
4
), pp.
728
737
.
44.
Li
,
L.
,
Li
,
H.
,
Gao
,
W.
,
Tong
,
F.
, and
Tang
,
Z.
,
2019
, “
Influence of Pin Shape on Heat Transfer Characteristics of Laminated Cooling Configuration
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Vol. 5B: Heat Transfer.
Phoenix, AZ
,
June 17–21
, ASME, Paper No.
V05BT22A011
.
45.
Gao
,
W.
,
Li
,
H.
,
Li
,
L.
,
Zhao
,
Z. n.
, and
Yue
,
Z.
,
2021
, “
Numerical Simulation of Broken Pin Effects on the Flow Field and Cooling Performance of a Double-Wall Cooling Configuration
,”
Chinese. Aeronaut.
,
34
(
2
), pp.
358
375
.
46.
Pu
,
J.
,
Wang
,
W.
,
Wang
,
J.-h.
,
Wu
,
W.-l.
, and
Wang
,
M.
,
2020
, “
Experimental Study of Free-Stream Turbulence Intensity Effect on Overall Cooling Performances and Solid Thermal Deformations of Vane Laminated End-Walls With Various Internal Pin–Fin Configurations
,”
Appl. Therm. Eng.
,
173
, p.
115232
.
47.
Luo
,
L.
,
Wang
,
C.
,
Wang
,
L.
,
Sunden
,
B.
, and
Wang
,
S.
,
2017
, “
Effects of Pin Fin Configurations on Heat Transfer and Friction Factor in an Improved Lamilloy Cooling Structure
,”
Heat Transfer Res.
,
48
(
7
), pp.
657
679
.
48.
Wang
,
C.
,
Zhang
,
J.
,
Wang
,
C.
, and
Tan
,
X.
,
2020
, “
Multi-Optimization of a Specific Laminated Cooling Structure for Overall Cooling Effectiveness and Pressure Drop
,”
Numer. Heat Transfer, Part A: Appl.
,
79
(
3
), pp.
195
221
.
49.
Bang
,
M.
,
Kim
,
S.
,
Choi
,
S.
,
Sohn
,
H.-S.
, and
Cho
,
H. H.
,
2020
, “
Impingement/Effusion Cooling With a Hollow Cylinder Structure for Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
155
, p.
119786
.
50.
Bang
,
M.
,
Kim
,
S.
,
Park
,
H. S.
,
Kim
,
T.
,
Rhee
,
D.-H.
, and
Cho
,
H. H.
,
2021
, “
Impingement/Effusion Cooling With a Hollow Cylinder Structure for Additive Manufacturing: Effect of Channel Gap Height
,”
Int. J. Heat Mass Transfer
,
175
, p.
121420
.
51.
Zhang
,
J.
,
Han
,
H. Z.
,
Li
,
Z. R.
, and
Zhong
,
H. G.
,
2021
, “
Effect of Pin-Fin Forms on Flow and Cooling Characteristics of Three-Layer Porous Laminate
,”
Appl. Therm. Eng.
,
194
, p.
117084
.
52.
Zhang
,
J.
,
Huaizhi
,
H.
,
Li
,
Z.
, and
Zhong
,
H.
,
2022
, “
Influence of Pin-Fin Height and Diameter on Flow and Cooling Characteristics of Three-Layer Porous Laminates: An Experimental Study
,”
Exp. Heat Transfer
,
35
(
6
), pp.
884
899
.
53.
Mao
,
J.
,
Guo
,
W.
,
Liu
,
Z.
, and
Zeng
,
J.
,
2007
, “
Experimental Studies on Cooling Effectiveness of the Double-Decker Air Jet Impingement With Film Outflow
,”
Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Vol. 4: Turbo Expo 2007, Parts A and B.
Montreal, Canada
,
May 14–17
, ASME, pp.
295
304
.
54.
Wang
,
K.
,
Li
,
H.
, and
Zhu
,
J.
,
2014
, “
Experimental Study of Heat Transfer Characteristic on Jet Impingement Cooling With Film Extraction Flow
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
620
629
.
55.
Liu
,
Y.
,
Rao
,
Y.
, and
Yang
,
L.
,
2020
, “
Numerical Simulations of a Double-Wall Cooling With Internal Jet Impingement and External Hexagonal Arrangement of Film Cooling Holes
,”
Int. J. Therm. Sci.
,
153
, p.
106337
.
56.
Nakamata
,
C.
,
Mimura
,
F.
,
Matsushita
,
M.
,
Yamane
,
T.
,
Fukuyama
,
Y.
, and
Yoshida
,
T.
,
2007
, “
Local Cooling Effectiveness Distribution of an Integrated Impingement and Pin Fin Cooling Configuration
,”
Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Vol. 4: Turbo Expo 2007, Parts A and B
,
Montreal, Canada
,
May 14–17
, ASME, pp.
23
34
.
57.
Wilfert
,
G.
, and
Fottner
,
L.
,
1994
, “
The Aerodynamic Mixing Effect of Discrete Cooling Jets With Mainstream Flow on a Highly Loaded Turbine Blade
,”
Proceedings of the ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition, Vol. 1: Turbomachinery
,
The Hague, Netherlands
,
June 13–16
, ASME, Paper No.
V001T01A084
.
58.
Aga
,
V.
,
Mansour
,
M.
, and
Abhari
,
R. S.
,
2008
, “
Aerothermal Performance of Streamwise and Compound Angled Pulsating Film Cooling Jets
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air, Vol. 6: Turbomachinery, Parts A, B, and C
,
Berlin, Germany
,
June 9–13
, ASME, pp.
1895
1907
.
59.
Gräf
,
L.
, and
Kleiser
,
L.
,
2013
, “
Film Cooling Using Antikidney Vortex Pairs: Effect of Blowing Conditions and Yaw Angle on Cooling and Losses
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Vol. 5B: Heat Transfer
,
Phoenix, AZ
,
June 17–21
, ASME, Paper No.
V05BT19A011
.
60.
Jung
,
E. Y.
,
Chung
,
H.
,
Choi
,
S. M.
,
Woo
,
T.-k.
, and
Cho
,
H. H.
,
2017
, “
Conjugate Heat Transfer on Full-Coverage Film Cooling With Array Jet Impingements With Various Biot Numbers
,”
Exp. Therm. Fluid. Sci.
,
83
, pp.
1
8
.
61.
Jaiswal
,
A. K.
,
Mahapatra
,
P. S.
, and
Prasad
,
B. V. S. S. S.
,
2021
, “
Effect of Microchannel on Combined Impingement and Film Cooling of a Concave Surface
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105441
.
62.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A new k-ɛ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
63.
Kim
,
S. H.
,
Ahn
,
K. H.
,
Park
,
J. S.
,
Jung
,
E. Y.
,
Hwang
,
K.-Y.
, and
Cho
,
H. H.
,
2017
, “
Local Heat and Mass Transfer Measurements for Multi-Layered Impingement/Effusion Cooling: Effects of Pin Spacing on the Impingement and Effusion Plate
,”
Int. J. Heat Mass Transfer
,
105
, pp.
712
722
.
64.
Tong
,
F.
,
Gou
,
W.
,
Zhao
,
Z.
,
Gao
,
W.
,
Li
,
H.
, and
Li
,
L.
,
2020
, “
Numerical Investigation of Impingement Heat Transfer on Smooth and Roughened Surfaces in a High-Pressure Turbine Inner Casing
,”
Int. J. Therm. Sci.
,
149
, p.
106186
.
You do not currently have access to this content.