Abstract

Solar-powered membrane distillation (SP-MD) technology has proven to be an ideal solution for providing fresh water in remote and off-grid locations. In this study, a novel solar energy-driven direct contact membrane distillation (DCMD) cycle is proposed in which a nanofluid-based volumetric absorption solar collector (VASC) is used to drive the DCMD process. The present work focuses on the use of volumetric collector instead of commercially available surface absorption-based solar collector in case of two-loop indirect SP-MD systems, which are installed to control the scaling and corrosion issues in solar collectors. The thermodynamic performance of this two-loop indirect solar-powered DCMD (SP-DCMD) system has been evaluated with the help of a mathematical model prepared in matlab. For modeling the DCMD unit, the ɛ-number of transfer unit (NTU) method used for designing heat exchangers has been employed. The performance of the overall system is evaluated by gained output ratio (GOR), thermal efficiency (η) of the membrane distillation, and water flux (Jw), and effects of various operating parameters related to both DCMD and VASC systems have been understood on the overall system performance. Finally, it has been shown that VASC-driven DCMD system has been approximately 4–15% higher gained output ratio compared to surface absorption-based solar collector (SASC)-driven DCMD system under similar operating conditions.

References

1.
Qtaishat
,
M.
,
Matsuura
,
T.
,
Kruczek
,
B.
, and
Khayet
,
M.
,
2008
, “
Heat and Mass Transfer Analysis in Direct Contact Membrane Distillation
,”
Desalination
,
219
(
1–3
), pp.
272
292
.
2.
Alkhudhiri
,
A.
,
Darwish
,
N.
, and
Hilal
,
N.
,
2012
, “
Membrane Distillation: A Comprehensive Review
,”
Desalination
,
287
, pp.
2
18
.
3.
Ashoor
,
B. B.
,
Mansour
,
S.
,
Giwa
,
A.
,
Dufour
,
V.
, and
Hasan
,
S. W.
,
2016
, “
Principles and Applications of Direct Contact Membrane Distillation (DCMD): A Comprehensive Review
,”
Desalination
,
398
, pp.
222
246
.
4.
González
,
D.
,
Amigo
,
J.
, and
Suárez
,
F.
,
2017
, “
Membrane Distillation: Perspectives for Sustainable and Improved Desalination
,”
Renewable Sustainable Energy Rev.
,
80
, pp.
238
259
.
5.
Summers
,
E. K.
, and
Arafat
,
H. A.
,
2012
, “
Energy Efficiency Comparison of Single-Stage Membrane Distillation (MD) Desalination Cycles in Different Configurations
,”
Desalination
,
290
, pp.
54
66
.
6.
Qtaishat
,
M. R.
, and
Banat
,
F.
,
2013
, “
Desalination by Solar Powered Membrane Distillation Systems
,”
Desalination
,
308
, pp.
186
197
.
7.
Lokare
,
O. R.
,
Tavakkoli
,
S.
,
Rodriguez
,
G.
,
Khanna
,
V.
, and
Vidic
,
R. D.
,
2017
, “
Integrating Membrane Distillation with Waste Heat From Natural Gas Compressor Stations for Produced Water Treatment in Pennsylvania
,”
Desalination
,
413
, pp.
144
153
.
8.
Shafieian
,
A.
,
Khiadani
,
M.
, and
Nosrati
,
A.
,
2019
, “
Performance Analysis of a Thermal-Driven Tubular Direct Contact Membrane Distillation System
,”
Appl. Therm. Eng.
,
159
, p. 113887.
9.
Shim
,
W. G.
,
He
,
K.
,
Gray
,
S.
, and
Moon
,
I. S.
,
2015
, “
Solar Energy Assisted Direct Contact Membrane Distillation (DCMD) Process for Seawater Desalination
,”
Sep. Purif. Technol.
,
143
, pp.
94
104
.
10.
Bhalla
,
V.
, and
Tyagi
,
H.
,
2018
, “
Parameters Influencing the Performance of Nanoparticles-Laden Fluid-Based Solar Thermal Collectors: A Review on Optical Properties
,”
Renewable Sustainable Energy Rev.
,
84
, pp.
12
42
.
11.
Sha
,
A.
, and
Khiadani
,
M.
,
2019
, “
A Novel Solar-Driven Direct Contact Membrane-Based Water Desalination System
,”
Energy Convers. Manage.
,
199
, p. 112055.
12.
Elzahaby
,
A. M.
,
Kabeel
,
A. E.
,
Bassuoni
,
M. M.
,
Refat
,
A.
, and
Elbar
,
A.
,
2016
, “
Direct Contact Membrane Water Distillation Assisted With Solar Energy
,”
Energy Convers. Manage.
,
110
, pp.
397
406
.
13.
Kabeel
,
A. E.
,
Abdelgaied
,
M.
, and
El-said
,
E. M. S.
,
2017
, “
Study of a Solar-Driven Membrane Distillation System : Evaporative Cooling Effect on Performance Enhancement
,”
Renewable Energy
,
106
, pp.
192
200
.
14.
Bamasag
,
A.
,
Alqahtani
,
T.
,
Sinha
,
S.
,
Ghaffour
,
N.
, and
Phelan
,
P.
,
2020
, “
Experimental Investigation of a Solar-Heated Direct Contact Membrane Distillation System Using Evacuated Tube Collectors
,”
Desalination
,
487
(
March
), p.
114497
.
15.
Lisboa
,
K.M.
,
de Moraes
,
D.B.
,
Naveira-Cotta
,
C.P.
and
Cotta
,
R.M.
,
2021
, “
Analysis of the Membrane Effects on the Energy Efficiency of Water Desalination in a Direct Contact Membrane Distillation (DCMD) System With Heat Recovery
,”
Appl. Therm. Eng.
,
182
, p.
116063
.
16.
Li
,
Q.
,
Beier
,
L.
,
Tan
,
J.
,
Brown
,
C.
,
Lian
,
B.
,
Wang
,
Y.
,
Dai
,
P.
, et al
,
2019
, “
An Integrated, Solar-Driven Membrane Distillation System for Water Purification and Energy Generation
,”
Appl. Energy
,
237
, pp.
534
548
.
17.
Chen
,
T. C.
, and
Ho
,
C. D.
,
2010
, “
Immediate Assisted Solar Direct Contact Membrane Distillation in Saline Water Desalination
,”
J. Membr. Sci.
,
358
(
1–2
), pp.
122
130
.
18.
Lienhard
,
J. H.
,
Antar
,
M. A.
,
Bilton
,
A.
,
Blanco
,
J.
, and
Zaragoza
,
G.
,
2012
, “Solar Desalination,”
Annual Review of Heat Transfer
,
Begell House
,
Danbury, CT
, pp.
277
347
.
19.
Garg
,
K.
,
Khullar
,
V.
,
Das
,
S. K.
, and
Tyagi
,
H.
,
2018
, “
Performance Evaluation of a Brine-Recirculation Multistage Flash Desalination System Coupled With Nanofluid-Based Direct Absorption Solar Collector
,”
Renewable Energy
,
122
, pp.
140
151
.
20.
Garg
,
K.
,
Khullar
,
V.
,
Das
,
S. K.
, and
Tyagi
,
H.
,
2019
, “
Parametric Study of the Energy Efficiency of the HDH Desalination Unit Integrated With Nanofluid-Based Solar Collector
,”
J. Therm. Anal. Calorim.
,
135
(
2
), pp.
1465
1478
.
21.
Tyagi
,
H.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
ASME J. Sol. Energy
,
131
(
4
), p.
041004
.
22.
Ohri
,
V.
, and
Khullar
,
V.
,
2019
, “
Using Solar Energy for Water Purification Through Nanoparticles Assisted Evaporation
,”
ASME J. Sol. Energy Eng.
,
141
, p.
011008
.
23.
Gorji
,
T. B.
, and
Ranjbar
,
A. A.
,
2016
, “
A Numerical and Experimental Investigation on the Performance of a Low-Flux Direct Absorption Solar Collector (DASC) Using Graphite, Magnetite and Silver Nanofluids
,”
Sol. Energy
,
135
, pp.
493
505
.
24.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley India
,
Noida, India
.
25.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
2008
,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
26.
Palik
,
E. D.
,
1997
,
Handbook of Optical Constants of Solids, Five-Volume Set: Handbook of Thermo-Optic Coefficients of Optical Materials With Applications
,
Elsevier Science
,
Cambridge, MA
.
27.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
,
2010
, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033102
.
28.
Bhalla
,
V.
,
Khullar
,
V.
, and
Tyagi
,
H.
,
2019
, “
Investigation of Factors Influencing the Performance of Nanofluid-Based Direct Absorption Solar Collector Using Taguchi Method
,”
J. Therm. Anal. Calorim.
,
135
(
2
), pp.
1493
1505
.
29.
Phelan
,
P.
,
Otanicar
,
T.
,
Taylor
,
R.
, and
Tyagi
,
H.
,
2013
, “
Trends and Opportunities in Direct-Absorption Solar Thermal Collectors
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021003
.
30.
Swaminathan
,
J.
,
Chung
,
H. W.
,
Warsinger
,
D. M.
, and
Lienhard V
,
J. H.
,
2016
, “
Membrane Distillation Model Based on Heat Exchanger Theory and Configuration Comparison
,”
Appl. Energy
,
184
, pp.
491
505
.
31.
Termpiyakul
,
P.
, and
Jiraratananon
,
R.
,
2005
, “
Heat and Mass Transfer Characteristics of a Direct Contact Membrane Distillation Process for Desalination
,”
Desalination
,
177
(
1–3
), pp.
133
141
.
32.
Zuo
,
G.
,
Wang
,
R.
,
Field
,
R.
, and
Fane
,
A. G.
,
2011
, “
Energy Efficiency Evaluation and Economic Analyses of Direct Contact Membrane Distillation System Using Aspen Plus
,”
Desalination
,
283
, pp.
237
244
.
33.
Garg
,
K.
,
Khullar
,
V.
,
Das
,
S. K.
, and
Tyagi
,
H.
,
2018
, “
Numerical Study of Nanofluid-Based Solar Collector for Humidification-Dehumidification (HDH) Desalination
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
52088
,
Pittsburgh, PA
,
Nov. 9–15
, p.
V06BT08A032
.
34.
Khullar
,
V.
,
Bhalla
,
V.
, and
Tyagi
,
H.
,
2017
, “
Potential Heat Transfer Fluids (Nanofluids) for Direct Volumetric Absorption-Based Solar Thermal Systems
,”
ASME J.Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011009
.
35.
Garg
,
K.
,
Bhalla
,
V.
,
Khullar
,
V.
,
Das
,
S. K.
, and
Tyagi
,
H.
,
2017
, “
Performance Evaluation of Single Stage Flash Evaporation Desalination System Coupled with Nanofluid-Based Direct
,”
24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017)
,
Hyderabad, India
,
Dec. 27–30
, pp.
1
8
, Paper No. IHMTC2017-19-0659.
36.
Saffarini
,
R. B.
,
Summers
,
E. K.
,
Arafat
,
H. A.
, and
Lienhard V
,
J. H.
,
2012
, “
Economic Evaluation of Stand-Alone Solar Powered Membrane Distillation Systems
,”
Desalination
,
299
, pp.
55
62
.
37.
Bhalla
,
V.
,
Khullar
,
V.
, and
Tyagi
,
H.
,
2018
, “
Experimental Investigation of Photo-Thermal Analysis of Blended Nanoparticles (Al2O3/CO3O4) for Direct Absorption Solar Thermal Collector
,”
Renewable Energy
,
123
, pp.
616
626
.
38.
Sharqawy
,
M. H.
,
Lienhard V
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
Thermophysical Properties of Seawater: A Review of Existing Correlations and Data
,”
Desalin. Water Treat.
,
16
(
1–3
), pp.
354
380
.
You do not currently have access to this content.