Abstract

Every day, a huge amount of energy is released into the atmosphere in the form of waste heat. The search for a cleaner and more efficient society, not only at the industrial level but also at the domestic level, should avoid this type of emissions. Steelmaking is an example of an industrial sector with high optimization potential in energy management. In this line, this work presents the main outcomes of the investigation carried out in the search of a technical solution for heat capture and reutilization from one of the main waste heat streams in the steelworks, the molten slag. For this purpose, a piping system embedded in the slag pit soil is proposed as a satisfactory solution for the heat capture operation. Besides, the internal applicability of this recovered heat is also addressed. Overall, the analysis carried out allows the identification of the maximum energy that can be recovered from the slag if the proposed technology is implemented (around 306 kWht per casting, which represents 6.3% of the total available energy). The work is completed with a preliminary techno-economic analysis which has shown a depreciated payback period of the proposed technology below 7 years.

References

1.
International Energy Agency
,
2019
, “
IEA World Energy Balances—2019 Overview
”.
2.
U.S. Energy Information Administration
,
2020
, “
Annual Energy Outlook 2020
”.
3.
Fernández
,
A. I.
,
Barreneche
,
C.
,
Miró
,
L.
,
Brückner
,
S.
, and
Cabeza
,
L. F.
,
2015
, “19—Thermal Energy Storage (TES) Systems Using Heat From Waste,”
Advances in Thermal Energy Storage Systems
,
L. F.
Cabeza
, ed.,
Woodhead Publishing
,
Cambridge, UK
, pp.
479
492
.
4.
Jouhara
,
H.
,
Khordehgah
,
N.
,
Almahmoud
,
S.
,
Delpech
,
B.
,
Chauhan
,
A.
, and
Tassou
,
S.
,
2018
, “
Waste Heat Recovery Technologies and Applications
,”
Ther. Sci. Eng. Prog.
,
6
, pp.
268
289
.
5.
U.S. Department of Energy
,
2008
, “
Waste Heat Recovery: Technology and Opportunities in the U.S. Industry
.”
6.
Pehnt
,
M.
,
Boedekery
,
J.
,
Arens
,
M.
,
Jochem
,
E.
, and
Idrissora
,
F.
,
2010
, “
Die Nutzung Industrielller Abwärme-Echnisch-Wirtschaftlice Potenziale und Energiepolitische Umsetzung
,” Project Report No. FKZ 03KSW016A und B.
7.
Zuliani
,
D.
,
Scipolo
,
V.
, and
Born
,
C.
,
2010
, “
Opportunities for Increasing Productivity, Lowering Operating Costs and Reducing Greenhouse Gas Emissions in EAF and BOF Steelmaking
,” Millennium Steel India, pp.
35
42
.
8.
Zhang
,
H.
,
Wang
,
H.
,
Zhu
,
X.
,
Qiu
,
Y.-J.
,
Li
,
K.
,
Chen
,
R.
, and
Liao
,
Q.
,
2013
, “
A Review of Waste Heat Recovery Technologies Towards Molten Slag in Steel Industry
,”
Appl. Energy
,
112
, pp.
956
966
.
9.
Swaminathan
,
C. R.
, and
Voller
,
V. R.
,
1992
, “
A General Enthalpy Method for Modeling Solidification Processes
,”
Metall. Trans. B
,
23
(
5
), pp.
651
664
.
10.
Swaminathan
,
C. R.
, and
Voller
,
V. R.
,
1997
, “
Towards a General Numerical Scheme for Solidification Systems
,”
Int. J. Heat Mass Transfer
,
40
(
12
), pp.
2859
2868
.
11.
Blanco-Rodríguez
,
P.
,
Rodríguez-Aseguinolaza
,
J.
,
Gil
,
A.
,
Risueño
,
E.
,
D'Aguanno
,
B.
,
Loroño
,
I.
, and
Martín
,
L.
,
2015
, “
Experiments on a Lab Scale TES Unit Using Eutectic Metal Alloy as PCM
,”
Energy Procedia
,
69
, pp.
769
778
.
12.
Nield
,
D. A.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media
,
Springer
,
NY
.
13.
Díaz-Heras
,
M.
,
Belmonte
,
J. F.
, and
Almendros-Ibáñez
,
J. A.
,
2020
, “
Effective Thermal Conductivities in Packed Beds: Review of Correlations and its Influence on System Performance
,”
Appl. Therm. Eng.
,
171
, p.
115048
.
14.
Kunii
,
D.
, and
Smith
,
J.
,
1960
, “
Heat Transfer Characteristics of Porous Rocks
,”
AIChE J.
,
6
(
1
), pp.
71
78
.
15.
Ortega-Fernández
,
I.
,
2017
, “
High Temperature Packed Bed Thermal Energy Storage Systems Based on low Cost Materials
,”
Ph.D dissertation
,
University of the Basque Country
,
Bilbao, Spain
.
16.
González-Fernández
,
L.
,
Ortega-Fernández
,
I.
,
Grosu
,
Y.
, and
Faik
,
A.
,
2019
, “
Thermophysical Properties of Steel Slag for Heat Recovery and Storage Applications
,”
Proceedings of the 10th European Slag Conference
,
Thessaloniki, Greece
,
Oct. 8–11
, p.
160
.
17.
Hoivik
,
N.
,
Greiner
,
C.
,
Barragan
,
J.
,
Crespo Iniesta
,
A.
,
Skeie
,
G.
,
Bergan
,
P.
,
Blanco-Rodriguez
,
P.
, and
Calvet
,
N.
,
2019
, “
Long-Term Performance Results of Concrete-Based Modular Thermal Energy Storage System
,”
J. Energy Sotrage
,
24
, p.
100735
.
You do not currently have access to this content.