Abstract

We present a detailed numerical analysis of electrophoresis induced concentration of a bio-analyte facilitated by temperature gradient focusing (TGF) in a phosphate buffer solution via Joule heating inside a converging–diverging microchannel. The purpose is to study the effects of frequency of AC field and channel width variation on the concentration of target analyte. We tune the buffer viscosity, conductivity, and electrophoretic mobility of the analyte such that the electrophoretic velocity of the analyte locally balances the electroosmotic flow (EOF) of the buffer, resulting in a local build-up of the analyte concentration in a target region. An AC field is superimposed on the applied DC field within the microchannel in such a way that the back pressure effect is minimized, resulting in minimum dispersion and high concentration of the target analyte. Axial transport of fluorescein-Na in the phosphate buffer solution is controlled by inducing temperature gradient through Joule heating. The technique leverages the fact that the buffer’s ionic strength and viscosity depend on temperature, which in turn guides the analyte transport. A numerical model is proposed and a finite element-based solution of the coupled electric field, mass, momentum, energy, and species transport equations are carried out. Simulation predict peak of 670-fold concentration of fluorescein-Na is achieved. The peak concentration is found to increase sharply as the channel throat width decreases, while the axial spread of concentrated analyte increases at lower frequency of AC field. The results of the work may improve the design of micro concentrator.

References

1.
Wang
,
L.
, and
Li
,
P. C. H.
,
2011
, “
Microfluidic DNA Microarray Analysis: A Review
,”
Anal. Chim. Acta
,
687
(
1
), pp.
12
27
. 10.1016/j.aca.2010.11.056
2.
Cima
,
I.
,
Yee
,
C. W.
,
Iliescu
,
F. S.
,
Phyo
,
W. M.
,
Lim
,
K. H.
,
Iliescu
,
C.
, and
Tan
,
M. H.
,
2013
, “
Label-Free Isolation of Circulating Tumor Cells in Microfluidic Devices: Current Research and Perspectives
,”
Biomicrofluidics
,
7
(
1
), p.
011810
. 10.1063/1.4780062
3.
Pamme
,
N.
,
2007
, “
Continuous Flow Separations in Microfluidic Devices
,”
Lab Chip
,
7
(
12
), pp.
1644
1659
. 10.1039/b712784g
4.
Leach
,
J.
,
Mushfique
,
H.
,
Di Leonardo
,
R.
,
Padgett
,
M.
, and
Cooper
,
J.
,
2006
, “
An Optically Driven Pump for Microfluidics
,”
Lab Chip
,
6
(
6
), pp.
735
739
. 10.1039/b601886f
5.
Ould El Moctar
,
A.
,
Aubry
,
N.
, and
Batton
,
J.
,
2003
, “
Electro-Hydrodynamic Micro-Fluidic Mixture
,”
Lab Chip
,
3
(
4
), pp.
273
280
. 10.1039/b306868b
6.
Wu
,
R.
,
Wang
,
Z.
,
Zhao
,
W.
,
Yeung
,
W. S. B.
, and
Fung
,
Y. S.
,
2013
, “
Multi-Dimension Microchip-Capillary Electrophoresis Device for Determination of Functional Proteins in Infant Milk Formula
,”
J. Chromatogr., A
,
1304
, pp.
220
226
. 10.1016/j.chroma.2013.06.073
7.
Kang
,
K. H.
,
Xuan
,
X.
,
Kang
,
Y.
, and
Li
,
D.
, “
Effects of DC-Dielectrophoretic Force on Particle Trajectories in Microchannels
,”
J. Appl. Phys.
,
99
(
6
), p.
064702
. 10.1063/1.2180430
8.
Puri
,
I. K.
, and
Ganguly
,
R.
,
2014
, “
Particle Transport in Therapeutic Magnetic Fields
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
407
440
. 10.1146/annurev-fluid-010313-141413
9.
Jung
,
B.
,
Bharadwaj
,
R.
, and
Santiago
,
J. G.
,
2006
, “
On Chip Millionfold Sample Stacking Using Transient Isotachophoresis
,”
Anal. Chem.
,
78
(
7
), pp.
2319
2327
. 10.1021/ac051659w
10.
Zhang
,
C. X.
, and
Thormann
,
W.
,
1996
, “
Head-Column Field-Amplified Sample Stacking in Binary System Capillary Electrophoresis: A Robust Approach Providing Over 1000-Fold Sensitivity Enhancement
,”
Anal. Chem.
,
68
(
15
), pp.
2523
2532
. 10.1021/ac951250e
11.
Quirino
,
J. P.
, and
Terabe
,
S.
,
1998
, “
Exceeding 5000-Fold Concentration of Dilute Analytes in Miceller Electrokinetic Chromatography
,”
Science
,
282
(
5388
), pp.
465
468
. 10.1126/science.282.5388.465
12.
Yoo
,
K.
,
Shim
,
J.
,
Liu
,
J.
, and
Dutta
,
P.
,
2014
, “
Efficient Algorithm for Simulation of Isoelectric Focusing
,”
Electrophoresis
,
35
(
5
), pp.
638
645
. 10.1002/elps.201300310
13.
Kang
,
Y.
,
Cetin
,
B.
,
Wu
,
Z.
, and
Li
,
D.
,
2009
, “
Continuous Particle Separation With Localized AC-Dielectrophoresis Using Embedded Electrodes and Insulating Hurdle
,”
Electrochim. Acta
,
54
(
6
), pp.
1715
1720
. 10.1016/j.electacta.2008.09.062
14.
Ross
,
D.
, and
Locascio
,
L. E.
,
2002
, “
Microfluidic Temperature Gradient Focusing
,”
Anal. Chem.
,
74
(
11
), pp.
2556
2564
. 10.1021/ac025528w
15.
Ge
,
Z. W.
,
Wang
,
W.
, and
Yang
,
C.
,
2015
, “
Rapid Concentration of Deoxyribonucleic Acid via Joule Heating Induced Temperature Gradient Focusing in Poly-Dimethylsiloxane Microfluidic Channel
,”
Anal. Chim. Acta
,
858
, pp.
91
97
. 10.1016/j.aca.2014.12.016
16.
Sommer
,
G. J.
,
Kim
,
S. M.
,
Littrell
,
R. J.
, and
Hasselbrink
,
E. F.
,
2007
, “
Theoretical and Numerical Analysis of Temperature Gradient Focusing via Joule Heating
,”
Lab Chip
,
7
(
7
), pp.
898
907
. 10.1039/b701894k
17.
Lin
,
H.
,
Shackman
,
J. G.
, and
Ross
,
D.
,
2008
, “
Finite Sample Effect in Temperature Gradient Focusing
,”
Lab Chip
,
8
(
6
), pp.
969
978
. 10.1039/b713749d
18.
Ge
,
Z. W.
,
Yang
,
C.
, and
Tang
,
G. Y.
,
2010
, “
Concentration Enhancement of Sample Solutes in a Sudden Expansion Microchannel With Joule Heating
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2722
2731
.
19.
Hoebel
,
S. J.
,
Balss
,
K. M.
,
Jones
,
B. J.
,
Malliaris
,
C. D.
,
Munson
,
M. S.
,
Vreeland
,
W. N.
, and
Ross
,
D.
,
2006
, “
Scanning Temperature Gradient Focusing
,”
Anal. Chem.
,
78
(
20
), pp.
7186
7190
. 10.1021/ac060934r
20.
Matsui
,
T.
,
Franzke
,
J.
,
Manz
,
A.
, and
Janasek
,
D.
,
2007
, “
Temperature Gradient Focusing in a PDMS/Glass Hybrid Microfluidic Chip
,”
Electrophoresis
,
28
(
24
), pp.
4606
4611
. 10.1002/elps.200700272
21.
Shameli
,
S. M.
,
Glawdel
,
T.
,
Liu
,
Z.
, and
Ren
,
C. L.
,
2012
, “
Bilinear Temperature Gradient Focusing in a Hybrid PDMS/Glass Microfluidic Chip Integrated With Planar Heaters for Generating Temperature Gradient
,”
J. Anal. Chem.
,
84
(
6
), pp.
2968
2973
. 10.1021/ac300188s
22.
Kim
,
S. M.
,
Sommer
,
G. J.
,
Burns
,
M. A.
, and
Hasselbrink
,
E. F.
,
2006
, “
Low-Power Concentration and Separation Using Temperature Gradient Focusing via Joule Heating
,”
Anal.Chem.
,
78
(
23
), pp.
8028
8035
. 10.1021/ac061194p
23.
Ge
,
Z.
,
Wang
,
W.
, and
Yang
,
C.
,
2011
, “
Towards High Concentration Enhancement of Microfluidic Temperature Gradient Focusing of Sample Solutes Using Combined AC and DC Field Induced Joule Heating
,”
Lab Chip
,
11
(
7
), pp.
1396
1402
. 10.1039/c0lc00421a
24.
Sanchez
,
S.
,
Ascanio
,
G.
,
Mendez
,
F.
, and
Bautista
,
O.
,
2018
, “
Theoretical Analysis of Non-Linear Joule Heating Effects on an Electroosmotic Flow With Patterned Surface Charges
,”
Phys. Fluids
,
30
(
11
), pp.
1
23
. 10.1063/1.5051175
25.
Tang
,
G.
, and
Yang
,
C.
,
2008
, “
Numerical Modelling of Joule Heating Induced Temperature Gradient Focusing in Microfluidic Channels
,”
Electrophoresis
,
29
(
5
), pp.
1006
1012
. 10.1002/elps.200700714
26.
Kunti
,
G.
,
Bhattacharya
,
A.
, and
Chakraborty
,
S.
,
2017
, “
Rapid Mixing With High-Throughput in a Semi-Active Semi-Passive Micromixer
,”
Electrophoresis
,
38
(
9–10
), pp.
1310
1317
. 10.1002/elps.201600393
27.
Feng
,
J. J.
,
Krishnamoorthy
,
S.
, and
Sundaram
,
S.
,
2007
, “
Numerical Analysis of Mixing by Electrothermal Induced Flow in Microfluidic System
,”
Biomicrofluidics
,
1
(
2
), p.
024102
. 10.1063/1.2734910
You do not currently have access to this content.