Abstract

In this paper, inspired by micro-scale surface structure patterns of birds’ flight feather, a novel thermal-protection enhancement technique is proposed for a turbine endwall with cavity air leaked from an upstream realistic rim seal. The potential application of the micro-scale surface structures is demonstrated by using well-validated numerical simulations. Overall film cooling performance and total thermodynamic loss are examined to comprehensively evaluate the feasibility of the micro-scale surface patterns for three cavity air flowrates. Detailed thermal fields and flow structures involved in the coolant–mainstream interactions are also presented to reveal physical flow mechanisms behind. Comparisons with a smooth endwall and previously used ribbed endwall cases show that applying the micro-scale structures onto the turbine endwall generates a substantial increase in cooling effectiveness with a very slight aerodynamic penalty. Despite of enhanced heat transfer levels, the resulting heat loads into the endwall are significantly reduced. Detailed thermal fields and flow structures revealed that the addition of the micro-scale structures induces counter-rotating vorticities that mitigate the passage vortex and hence prevents the accumulation of coolant near the suction side. Besides, it is also noted that the grooves of the micro-scale structures have a transport effect that can convey the coolant to the far downstream areas of the endwall, and thus considerably increase the coverage in the chordwise direction. The findings of this work provide an evidence that the bio-inspired, micro-scale surface structures could be an alternative for enhancing turbine endwall cooling performance.

References

1.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
301
312
. 10.2514/1.16344
2.
Wright
,
L. M.
,
Malak
,
M. F.
,
Crites
,
D. C.
, and
Morris
,
M. C.
,
2014
, “
Review of Platform Cooling Technology for High Pressure Turbine Blades
,”
ASME Paper No. GT2014-26373
.
3.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
4
), p.
041003
. 10.1115/1.4002951
4.
Wright
,
L. M.
,
Gao
,
Z. H.
,
Yang
,
H. T.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform With Inclined Slot Leakage and Discrete Film Hole Flows
,”
ASME J. Heat Transfer
,
130
(
7
), p.
071702
. 10.1115/1.2907440
5.
Yang
,
X.
,
Liu
,
Z.
,
Liu
,
Z. S.
,
Simon
,
T. W.
, and
Feng
,
Z. P.
,
2019
, “
Endwall Film Cooling Performance for a First-Stage Guide Vane With Upstream Combustor Walls and Inlet Injection
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
1
), p.
011008
. 10.1115/1.4041342
6.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
. 10.1115/1.1811099
7.
Wu
,
P. S.
, and
Chang
,
S. F.
Vane Endwall Heat Transfer for Smooth and Stepped Inlet Using Streamwise and Cross Stream Film Injection
,”
ASME Paper No. GT2007-27850
.
8.
Shiau
,
C. C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J. C.
,
Xu
,
H. Z.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angle
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
. 10.1115/1.4042057
9.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2005
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film Cooled Endwall
,”
ASME Paper No. GT2005-68544
.
10.
Colban
,
W.
, and
Thole
,
K.
,
2007
, “
Influence of Hole Shape on the Performance of a Turbine Vane Endwall Film-Cooling Scheme
,”
Int. J. Heat Fluid Flow
,
28
(
3
), pp.
341
356
. 10.1016/j.ijheatfluidflow.2006.05.002
11.
Gao
,
Z. H.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2008
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME Paper No. GT2008-50286
.
12.
Morris
,
A. W. H.
, and
Hoare
,
R. G.
,
1975
, “
Secondary Loss Measurements in a Cascade of Turbine Blades With Meridional Wall Profiling
,”
ASME Paper No. 75-WA/GT-13
.
13.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Flow Measurements in a Nozzle Guide Vane Passage With a Low Aspect Ratio and Endwall Contouring
,”
ASME J. Turbomach.
,
122
(
4
), pp.
659
667
. 10.1115/1.1312799
14.
Harvey
,
N.
,
Rose
,
M.
,
Taylor
,
M.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part I—Three Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
. 10.1115/1.555445
15.
Nagel
,
M. G.
, and
Baier
,
R. D.
,
2005
, “
Experimentally Verified Numerical Optimization of a Three-Dimensional Parameterized Turbine Vane With Nonaxisymmetric End Walls
,”
ASME J. Turbomach.
,
127
(
2
), pp.
380
387
. 10.1115/1.1773848
16.
Lynch
,
S. P.
,
Sundaram
,
N.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Heat Transfer for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
1
), p.
011019
. 10.1115/1.4000542
17.
Panchal
,
K. V.
,
Abraham
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
, and
Malandra
,
A.
,
2012
, “
Effect of Endwall Contouring on a Transonic Turbine Blade Passage: Part 2—Heat Transfer Performance
,”
ASME Paper No. GT2012-68405
.
18.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2011
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Guide Vane: Convective Heat Transfer Measurements
,”
ASME J. Turbomach.
,
133
(
4
), p.
041008
. 10.1115/1.4002966
19.
Mahmood
,
G. I.
,
Gustafson
,
R.
, and
Acharya
,
S.
,
2009
, “
Flow Dynamics and Film Cooling Effectiveness on a Non-Axisymmetric Contour Endwall in a Two-Dimensional Cascade Passage
,”
ASME Paper No. GT2009-60236
.
20.
Rezasoltani
,
M.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2014
, “
Experimental Investigation of the Effect of Purge Flow on Film Cooling Effectiveness on a Rotating Turbine With Non-Axisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
136
(
9
), p.
091009
. 10.1115/1.4027196
21.
Pierce
,
F. J.
, and
Shin
,
J.
,
1992
, “
The Development of a Turbulent Junction Vortex System
,”
ASME J. Fluids Eng.
,
114
(
4
), pp.
559
565
. 10.1115/1.2910068
22.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
,
2004
, “
An Experimental Investigation of Contoured Leading Edges for Secondary Flow Loss Reduction
,”
ASME Paper No. GT2004-53964
.
23.
Zess
,
G. A.
, and
Thole
,
K. A.
,
2002
, “
Computation Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,”
ASME J. Turbomach.
,
124
(
2
), pp.
167
175
. 10.1115/1.1460914
24.
Han
,
S.
, and
Goldstein
,
R. J.
,
2005
, “
Influence of Blade Leading Edge Geometry on Turbine Endwall Heat (Mass) Transfer
,”
ASME Paper No. GT2005-68590
.
25.
Saha
,
A. K.
,
Mahmood
,
G. I.
, and
Acharya
,
S.
,
2006
, “
The Role of Leading-Edge Contouring on Endwall Flow and Heat Transfer: Computation and Experiments
,”
ASME Paper No. GT2006-91318
.
26.
Zhang
,
Y.
, and
Yuan
,
X.
,
2011
, “
Film Cooling Effectiveness Distribution on First-Stage Vane Endwall With and Without Leading-Edge Fillets: Part I: Effect of Leading Edge Geometry
,”
ASME Paper No. GT2011-45427
.
27.
Kawai
,
T.
, and
Adachi
,
T.
,
1987
, “
Effects of Blade Boundary Layer Fences on Secondary Flow and Losses in a Turbine Cascade
,”
International Gas Turbine Congress
,
Tokyo, Japan
,
Oct. 26–30
,
Paper No. 87-TOKYO-IGTC-16
.
28.
Kawai
,
T.
,
1994
, “
Effect of Combined Boundary Layer Fences on Turbine Secondary Flow and Losses
,”
JSME Int. J.
,
37
(
2
), pp.
377
384
. 10.1299/jsmeb.37.377
29.
Chung
,
J. T.
, and
Simon
,
T. W.
,
1993
, “
Effectiveness of the Gas Turbine Endwall Fences in Secondary Flow Control at Elevated Freestream Turbulence Levels
,”
ASME Paper No. 93-GT-51
.
30.
Kumar
,
K. N.
, and
Govardhan
,
M.
,
2011
, “
Secondary Flow Loss Reduction in a Turbine Cascade With a Linearly Varied Height Streamwise Endwall Fence
,”
Int. J. Rotating Mach.
,
2011
, pp.
1
16
. 10.1155/2011/352819
31.
Aunapu
,
N. V.
,
Volino
,
R. J.
,
Flack
,
K. A.
, and
Stoddard
,
R. M.
,
2000
, “
Secondary Flow Measurements in a Turbine Passage With Endwall Flow Modification
,”
ASME J. Turbomach.
,
122
(
4
), pp.
651
658
. 10.1115/1.1311286
32.
Miao
,
X.
,
Zhang
,
Q.
,
Wang
,
L.
,
Jiang
,
H.
, and
Qi
,
H.
,
2015
, “
Application of Riblets on Turbine Blade Endwall Secondary Flow Control
,”
AIAA J. Propul. Power
,
31
(
6
), pp.
1578
1585
. 10.2514/1.B35549
33.
Miao
,
X.
,
Zhang
,
Q.
,
Atkin
,
C.
,
Sun
,
Z. Z.
, and
Li
,
Y. S.
,
2018
, “
Improving Purge Air Cooling Effectiveness by Engineered End-Wall Surface Structures—Part II: Turbine Cascade
,”
ASME J. Turbomach.
,
140
(
9
), p.
091002
. 10.1115/1.4040854
34.
Bacher
,
E. V.
, and
Smith
,
C. R.
,
1985
, “
A Combined Visualization-Anemometry Study of the Turbulent Drag Reducing Mechanisms of Triangular Micro-Groove Surface Modifications
,”
AIAA Paper No. AIAA-85-0548
.
35.
Kevin
,
K.
,
Monty
,
J. P.
,
Bai
,
H. L.
,
Pathikonda
,
G.
,
Nugroho
,
B.
,
Barros
,
J. M.
,
Christensen
,
K. T.
, and
Hutchins
,
N.
,
2017
, “
Cross-Stream Stereoscopic Particle Image Velocimetry of a Modified Turbulent Boundary Layer Over Directional Surface Pattern
,”
J. Fluid Mech.
,
813
, pp.
412
435
. 10.1017/jfm.2016.879
36.
Lietmeyer
,
C.
,
Oehlert
,
K.
, and
Seume
,
J. R.
,
2013
, “
Optimal Application of Riblets on Compressor Blades and Their Contamination Behavior
,”
ASME J. Turbomach.
,
135
(
1
), p.
011036
. 10.1115/1.4006518
37.
Liu
,
Q.
,
Zhong
,
S.
, and
Li
,
L.
,
2019
, “
Effects of Bio-Inspired Micro-Scale Surface Patterns on the Profile Losses in a Liner Cascade
,”
ASME J. Turbomach.
,
141
(
12
), p.
121006
. 10.1115/1.4044612
38.
Oehlert
,
K.
, and
Seume
,
J.
,
2006
, “
Exploratory Experiments on Machined Riblets on Compressor Blades
,”
Proceedings of Fluids Engineering Division Summer Meeting (FEDSM2006)
,
Miami, FL
,
July 17–20
,
ASME Paper No. FEDSM2006-98093
.
39.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
, and
Meyer
,
R.
,
2000
, “
Fluid Mechanics of Biological Surfaces and Their Technological Application
,”
Naturwissenschaften
,
87
(
4
), pp.
157
171
. 10.1007/s001140050696
40.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
. 10.1115/1.2960953
41.
Yang
,
X.
,
Liu
,
Z. S.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z. P.
,
Guo
,
F. S.
,
Ding
,
L.
, and
Simon
,
T. W.
,
2019
, “
Experimental and Numerical Investigations of Overall Cooling Effectiveness on a Vane Endwall With Jet Impingement and Film Cooling
,”
Appl. Therm. Eng.
,
148
, pp.
1148
1163
. 10.1016/j.applthermaleng.2018.11.116
42.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
. 10.1115/1.2840937
43.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2002
, “
Effects of Nonuniform Inlet Conditions on Endwall Secondary Flows
,”
ASME J. Turbomach.
,
124
(
4
), pp.
623
631
. 10.1115/1.1505849
44.
Kost
,
F.
, and
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I—Aerodynamic Measurements
,”
ASME Paper No. 2001-GT-0145
.
You do not currently have access to this content.