Abstract

This study examines the impact of induced magnetic field and Hall current on steady fully developed hydromagnetic natural convection flow in a micro-channel under the action of an inclined magnetic field. The mathematical model responsible for the present physical situation is presented in a dimensionless form under relevant boundary conditions. The governing coupled equations are solved exactly. A parametric study of some physical parameters is conducted and a representative set of numerical results for the velocity field, the induced magnetic field, induced current density, volume flow rate, and skin friction on the micro-channel surfaces are illustrated graphically. It is observed that magnetic field inclination plays an important role in flow formation inside the micro-channel. Numerical computation reveals that the increase in inclination angle reduces the hydromagnetic drag leading to enhancement in primary fluid velocity, while the impact is just converse on the secondary fluid velocity. Furthermore, the increase in Hall current parameter increases the magnitude of the fluid velocity in both primary and secondary flow directions.

References

1.
Jha
,
B. K.
,
Aina
,
B.
, and
Ajiya
,
A. T.
,
2015
, “
MHD Natural Convection Flow in a Vertical Parallel Plate Micro-Channel
,”
Aina Shams Eng. J.
,
6
(
1
), pp.
289
295
. 10.1016/j.asej.2014.09.012
2.
Jha
,
B. K.
,
Aina
,
B.
, and
Ajiya
,
A. T.
,
2015
, “
Role of Suction/Injection on MHD Natural Convection Flow in a Vertical Micro-Channel
,”
Int. J. Energy Technol.
,
7
(
2
), pp.
30
39
.
3.
Jha
,
B. K.
, and
Aina
,
B.
,
2016
, “
MHD Natural Convection Flow in a Vertical Micro-Porous-Annulus in the Presence of Radial Magnetic Field
,”
J. Nanofluids
,
5
(
2
), pp.
292
301
. 10.1166/jon.2016.1204
4.
Jha
,
B. K.
,
Aina
,
B.
, and
Isa
,
S.
,
2015
, “
Fully Developed MHD Natural Convection Flow in a Vertical Annular Microchannel: An Exact Solution
,”
J. King Saud Univ. Sci.
,
27
(
3
), pp.
253
259
. 10.1016/j.jksus.2014.12.002
5.
Jha
,
B. K.
,
Aina
,
B.
, and
Isa
,
S.
,
2015
, “
MHD Natural Convection Flow in a Vertical Micro-Concentric-Annuli in the Presence of Radial Magnetic Field: An Exact Solution
,”
J. Ain Shams Eng.
,
6
(
4
), pp.
1061
1068
. 10.1016/j.asej.2015.07.010
6.
Chamkha
,
A. J.
,
2002
, “
On Hydromagnetic Mixed Convection Flow in a Vertical Channel With Symmetric and Asymmetric Wall Heating Conditions
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2509
2525
. 10.1016/S0017-9310(01)00342-8
7.
Umavathi
,
J. C.
,
Kumar
,
J. P.
,
Chamkha
,
A. J.
, and
Pop
,
I.
,
2004
, “
Mixed Convection in a Vertical Porous Channel
,”
Transp. Porous Media
,
61
(
3
), pp.
315
335
. 10.1007/s11242-005-0260-5
8.
Chamkha
,
A. J.
,
2000
, “
Unsteady Laminar Hydromagnetic Fluid–Particle Flow and Heat Transfer in Channels and Circular Pipes
,”
Int. J. Heat Fluid Flow
,
21
(
6
), pp.
740
746
. 10.1016/S0142-727X(00)00031-X
9.
Chamkha
,
A. J.
,
Grosan
,
T.
, and
Pop
,
I.
,
2002
, “
Fully Developed Free Convection of a Micropolar Fluid in a Vertical Channel
,”
Int. Commun. Heat Mass Transfer
,
29
(
8
), pp.
1119
1127
. 10.1016/S0735-1933(02)00440-2
10.
Umavathi
,
J. C.
,
Chamkha
,
A. J.
, and
Mateen
,
A.
,
2004
, “
Unsteady Two-Fluid Flow and Heat Transfer in a Horizontal Channel
,”
Heat Mass Transfer
,
42
(
2
), pp.
81
90
. 10.1007/s00231-004-0565-x
11.
Kumar
,
J. P.
,
Umavathi
,
J. C.
,
Chamkha
,
A. J.
, and
Pop
,
I.
,
2010
, “
Fully Developed Free-Convective Flow of Micropolar and Viscous Fluids in a Vertical Channel
,”
Appl. Math. Model.
,
34
(
5
), pp.
1175
1186
.
12.
Chamkha
,
A. J.
,
1999
, “
Flow of Two Immiscible Fluid in Porous and Non-Porous Channels
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
117
124
. 10.1115/1.483233
13.
Chamkha
,
A. J.
,
1994
, “
Unsteady Flow of a Dusty Conducting Fluid Through a Pipe
,”
Mech. Res. Commun.
,
21
(
3
), pp.
281
288
. 10.1016/0093-6413(94)90079-5
14.
Chamkha
,
A. J.
,
1997
, “
Non-Darcy Fully Developed Mixed Convection in a Porous Medium Channel With Heat Generation/Absorption and Hydromagnetic Effects
”,
Numer. Heat Transfer A Appl.
,
32
(
6
), pp.
653
675
. 10.1080/10407789708913911
15.
Chamkha
,
A. J.
,
2001
, “
Unsteady Laminar Hydromagnetic Flow and Heat Transfer in Porous Channels With Temperature-Dependent Properties
,”
Int. J. Numer. Methods Heat Fluid Flow
,
11
(
5
), pp.
430
448
. 10.1108/EUM0000000005529
16.
Chamkha
,
A. J.
,
1995
, “
Hydromagnetic Two-Phase Flow in a Channel
,”
Int. J. Eng. Sci.
,
33
(
3
), pp.
437
446
. 10.1016/0020-7225(93)E0006-Q
17.
Umavathi
,
J. C.
,
Chamkha
,
A. J.
, and
Sridhar
,
K. S. R.
,
2010
, “
Generalized Plain Couette Flow and Heat Transfer in a Composite Channel
,”
Transp. Porous Media
,
85
(
1
), pp.
157
169
.
18.
Chamkha
,
A. J.
,
Grosan
,
T.
, and
Pop
,
I.
,
2003
, “
Fully Developed Mixed Convection of a Micropolar Fluid in a Vertical Channel
,”
Int. J. Fluid Mech. Res.
,
30
(
3
), pp.
251
263
. 10.1615/InterJFluidMechRes.v30.i3.10
19.
Chamkha
,
A. J.
, and
Al-Subaie
,
M. A.
,
2009
, “
Hydromagnetic Buoyancy Induced Flow of a Particulate Suspension Through a Vertical Pipe With Heat Generation or Absorption Effects
,”
Turk. J. Eng. Environ. Sci.
,
33
(
2
), pp.
127
134
.
20.
Takhar
,
H. S.
,
Chamkha
,
A. J.
, and
Guhan
,
N.
,
1999
, “
Unsteady Flow and Heat Transfer on a Semi-Infinite Flat Plate With Aligned Magnetic Field
,”
Int. J. Eng. Sci.
,
37
(
13
), pp.
1723
1736
. 10.1016/S0020-7225(98)00144-X
21.
Chamkha
,
A. J.
, and
Abdul-Rahim
,
A. K.
,
2000
, “
Hydromagnetic Combined Heat and Mass Transfer by Natural Convection From a Permeable Surface Embedded in a Fluid-Saturated Porous Medium
,”
Int. J. Numer. Methods Heat Flow
,
10
(
5
), pp.
455
477
. 10.1108/09615530010338097
22.
Sutton
,
G.
, and
Sherman
,
A.
,
1965
,
Engineering Magnetohydrodynamics
,
McGraw-Hill
,
New York
.
23.
Katagiri
,
M.
,
1969
, “
The Effect of Hall Currents on the Magnetohydrodynamic Boundary Layer Flow Past a Semi-Infinite Flat Plate
,”
J. Phys. Soc. Jpn.
,
27
(
4
), pp.
1051
1059
. 10.1143/JPSJ.27.1051
24.
Hayat
,
T.
, and
Abbas
,
Z.
,
2007
, “
Effects of Hall Current and Heat Transfer on the Flow in a Porous Medium With Slip Condition
,”
J. Porous Media
,
10
(
1
), pp.
35
50
. 10.1615/JPorMedia.v10.i1.30
25.
Hossain
,
M. A.
, and
Rashid
,
R. I. M. A.
,
1987
, “
Hall Effects on Hydromagnetic Free Convection Flow Along a Porous Flat Plate With Mass Transfer
,”
J. Phys. Soc. Jpn.
,
56
(
1
), pp.
97
104
. 10.1143/JPSJ.56.97
26.
Hossain
,
M. A.
, and
Mohammad
,
K.
,
1988
, “
Effect of Hall Current on Hydromagnetic Free Convection Flow Near an Accelerated Porous Plate
,”
Jpn. J. Appl. Phys.
,
27
(
8
), pp.
1531
1535
. 10.1143/JJAP.27.1531
27.
Ghara
,
N.
,
Guria
,
M.
, and
Jana
,
R. N.
,
2012
, “
Hall Effect on Oscillating Flow due to Eccentrically Rotating Porous Disk and a Fluid at Infinity
,”
Meccanica
,
47
(
3
), pp.
557
571
. 10.1007/s11012-011-9468-3
28.
Pop
,
I.
, and
Watanabe
,
T.
,
1994
, “
Hall Effects on Magnetohydrodynamic Free Convection About a Semi-Infinite Vertical Flat Plate
,”
Int. J. Eng. Sci.
,
32
(
12
), pp.
1903
1911
. 10.1016/0020-7225(94)90087-6
29.
Pop
,
I.
, and
Watanabe
,
T.
,
1995
, “
Hall Effects on Magnetohydrodynamic Boundary Layer Flow Over a Continuous Moving Flat Plate
,”
Acta Mech.
,
108
(
1–4
), pp.
35
47
. 10.1007/BF01177326
30.
Singh
,
A. K.
,
1984
, “
Hall Effect on MHD Free-Convection Flow Past an Accelerated Vertical Porous Plate
,”
Astrophys. Space Sci.
,
102
(
2
), pp.
213
221
. 10.1007/BF00650168
31.
Animasaun
,
I. L.
,
Koriko
,
O. K.
,
Adegbie
,
K. S.
,
Babatunde
,
H. A.
,
Ibraheem
,
R. O.
,
Sandeep
,
N.
, and
Mahanthesh
,
B.
,
2018
, “
Comparative Analysis Between 36 nm and 47 nm Alumina–Water Nanofluid Flow in the Presence of Hall Effect
,”
J. Therm. Anal. Calorim.
135
(
2
), pp.
873
886
10.1007/s10973-018-7379-4
32.
Sharma
,
B. K.
,
Jha,
A. K.
, and
Chaudhary
,
R. C.
,
2007
, “
Hall Effect on MHD Mixed Convective Flow of a Viscous Incompressible Fluid Past a Vertical Porous Plate Immersed in a Porous Medium With Heat Source/Sink
,”
Rom. J. Phys.
,
52
(
5–7
), pp.
487
505
.
33.
Guria
,
M. A.
,
Kanch
,
K.
,
Das
,
S.
, and
Jana
,
R. N.
,
2010
, “
Effects of Hall Current and Slip Condition on Unsteady Flow of a Viscous Fluid due to Non-Coaxial Rotation of a Porous Disk and a Fluid at Infinity
,”
Meccanica
,
45
(
1
), pp.
23
32
. 10.1007/s11012-009-9218-y
34.
Shit
,
G. C.
,
2009
, “
Hall Effects on MHD Free Convective Flow and Mass Transfer Over a Stretching Sheet
,”
Int. J. Appl. Math. Mech.
,
5
(
8
), pp.
22
38
.
35.
Das
,
S.
,
Sarkar
,
B. C.
, and
Jana
,
R. N.
,
2011
, “
Hall Effects on MHD Couette Flow in Rotating System
,”
Int. J. Comput. Appl.
,
35
(
13
), pp.
22
30
.
36.
Jha
,
B. K.
, and
Apere
,
C. A.
,
2010
, “
Combined Effect of Hall and Ion-Slip Currents on Unsteady MHD Couette Flows in a Rotating System
,”
J. Phys. Soc. Jpn.
,
79
(
10
), pp.
104401
. 10.1143/JPSJ.79.104401
37.
Attia
,
H. A.
, and
Aboul-Hassan
,
A. L.
,
2003
, “
The Effect of Variable Properties on the Un-Steady Hartmann Flow With Heat Transfer Considering the Hall Effect
,”
Appl. Math. Model.
,
27
(
7
), pp.
551
563
. 10.1016/S0307-904X(03)00090-8
38.
Singh
,
K. D.
, and
Kumar
,
R.
,
2009
, “
Combined Effect of Hall Current and Rotation on Free Convection MHD Flows in a Porous Channel
,”
Indian J. Pure Appl. Phys.
,
47
(
9
), pp.
617
623
.
39.
Makinde
,
O. D.
,
Iskander
,
T.
,
Mabood
,
F.
,
Khan
,
W. A.
, and
Tshehla
,
M. S.
,
2016
, “
MHD Couette-Poiseuille Flow of Variable Viscosity Nano-Fluids in a Rotating Permeable Channel With Hall Effects
,”
J. Mol. Liq.
,
221
(
1
), pp.
778
787
. 10.1016/j.molliq.2016.06.037
40.
Seth
,
G. S.
, and
Singh
,
J. K.
,
2016
, “
Mixed Convection Hydromagnetic Flow in a Rotating Channel With Hall and Wall Conductance Effects
,”
Appl. Math. Model.
,
40
(
4
), pp.
2783
2803
. 10.1016/j.apm.2015.10.015
41.
Seth
,
G. S.
, and
Ghosh
,
S. K.
,
1986
, “
Unsteady Hydromagnetic Flow in a Rotating Channel in the Presence of Oblique Magnetic Field
,”
Int. J. Eng. Sci.
,
24
(
7
), pp.
1183
1193
. 10.1016/0020-7225(86)90013-3
42.
Reddy
,
J. V. R.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2015
, “
Thermo Diffusion and Hall Current Effects on an Unsteady Flow of a Nanofluid Under the Influence of Inclined Magnetic Field
,”
Int. J. Eng. Res. Afr.
,
20
(
61
), pp.
61
79
. www.scientific.net/JERA.2061
43.
Ghosh
,
S. K.
,
1999
, “
Hall Effect on Unsteady Hydromagnetic Flow in a Rotating Channel Permeated by an Inclined Magnetic Field in the Presence of an Oscillator
,”
Czech. J. Phys.
,
49
(
4
), pp.
465
472
.
44.
Ghosh
,
S. K.
,
2000
, “
Hall Effects on Unsteady Hydromagnetic Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field
,”
Czech. J. Phys.
,
50
(
6
), pp.
759
767
.
45.
Ghosh
,
S. K.
,
Beg
,
O. A.
, and
Aziz
,
A.
,
2011
, “
A Mathematical Model for Magnetohydrodynamic Convection Flow in a Rotating Horizontal Channel With Inclined Magnetic Field, Magnetic Induction and Hall Current Effects
,”
World J. Mech.
,
1
(
3
), pp.
137
154
. 10.4236/wjm.2011.13019
46.
Seth
,
G. S.
, and
Ghosh
,
S. K.
,
1986
, “
Unsteady Hydromagnetic Flow in a Rotating Channel in the Presence of Inclined Magnetic Field
,”
Int. J. Eng. Sci.
,
24
(
7
), pp.
1183
1193
. 10.1016/0020-7225(86)90013-3
47.
Ghosh
,
S. K.
, and
Bhattacharjee
,
P. K.
,
2000
, “
Hall Effects on Steady Hydromagnetic Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field
,”
Czech J. Phys.
,
50
(
6
), pp.
759
767
. 10.1023/A:1022839020051
48.
Pop
,
I.
,
Ghosh
,
S. K.
, and
Nandi
,
D. K.
,
2001
, “
Effects of the Hall Current on Free and Forced Convection Flows in a Rotating Channel in the Presence of an Inclined Magnetic Field
,”
Magnetohydrodynamics
,
37
(
4
), pp.
348
359
.
49.
Anwar Bég
,
O.
,
Sim
,
L.
,
Zueco
,
J.
, and
Bhargava
,
R.
,
2010
, “
Numerical Study of Magnetohydrodynamic Viscous Plasma Flow in Rotating Porous Media With Hall Currents and Inclined Magnetic Field Influence
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
2
), pp.
345
359
. 10.1016/j.cnsns.2009.04.008
50.
Seth
,
G. S.
,
Nandkeolyar
,
R.
, and
Ansari
,
M. S.
,
2012
, “
Effects of Hall Current and Rotation on Unsteady MHD Couette Flow in the Presence of an Inclined Magnetic Field
,”
J. Appl. Fluid Mech.
,
5
(
2
), pp.
67
74
.
51.
Jha
,
B. K.
, and
Aina
,
B.
,
2016
, “
Role of Induced Magnetic Field on MHD Natural Convection in Vertical Micro-Channel Formed by Two Electrically Non-Conducting Infinite Vertical Parallel Plates
,”
Alex. Eng. J.
,
55
(
3
), pp.
2087
2097
. 10.1016/j.aej.2016.06.030
52.
Sato
,
H.
,
1961
, “
The Hall Effect in the Viscous Flow of Ionized Gas Between Parallel Plates Under Transverse Magnetic Field
,”
J. Phys. Soc. Jpn.
,
16
(
7
), pp.
7
.
53.
Cramer
,
K. R.
, and
Pai
,
S. I.
,
1973
,
Magnetofluid Dynamics for Engineers and Applied Physicists
,
McGraw-Hill
,
New York
.
54.
Chen
,
C. K.
, and
Weng
,
H. C.
,
2005
, “
Natural Convection in a Vertical Micro-Channel
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
1053
1056
. 10.1115/1.1999651
55.
Eckert
,
E. R. G.
, and
Drake
,
R. M.
, Jr.
,
1972
,
Analysis of Heat and Mass Transfer
,
McGraw-Hill
,
New York
, Chap. 11.
56.
Goniak
,
R.
, and
Duffa
,
G.
,
1995
, “
Corrective Term in Wall Slip Equations for Knudsen Layer
,”
J. Thermophys. Heat Transfer
,
9
(
2
), pp.
383
384
. 10.2514/3.677
You do not currently have access to this content.