Abstract

Laminar natural convection in Bingham plastic fluids has been investigated from two differentially heated cylinders arranged either one above the other or along the diagonal of the square enclosure. The coupled momentum and energy equations have been solved to elucidate the effect of Rayleigh number (104–106), Prandtl number (10–100), Bingham number (0.01 to Bnmax), and the gap between the two cylinders in terms of the geometric parameters (0 to −0.25 for vertical alignment and 0.15 to 0.35 for diagonal alignment) on the detailed structure of the flow field and the overall heat transfer characteristics of the system. New extensive results are visualized in terms of streamlines, isotherm contours, and variation of the local Nusselt number along various surfaces. Additional insights are developed by examining the shear-rate contours and the yield surfaces delineating the fluid-like and solid-like regions in the flow domain. At high values of the Bingham number, the average Nusselt number reaches its asymptotic value corresponding to the conduction limit. The increasing Rayleigh number promotes fluid-like behavior which promotes heat transfer. The augmentation in heat transfer depends on the volume of fluid participating in the buoyancy-induced flow. For the vertical arrangement, the average Nusselt number (for the heated cylinder) decreases a little as these are moved slightly away from the center of the enclosure, followed by an increase as the two cylinders approach one of the sidewalls; this is so even in the conduction limit. In contrast, when the two cylinders are arranged along the diagonal, the Nusselt number progressively decreases as the gap between the two cylinders increases. Finally, predictive correlations have been developed for the average Nusselt number and the limiting Bingham number thereby enabling their estimation in a new application.

References

1.
Mishra
,
L.
, and
Chhabra
,
R. P.
,
2017
, “
Natural Convection in Power-Law Fluids in a Square Enclosure From Two Differentially Heated Horizontal Cylinders
,”
Heat Transf. Eng.
,
39
(
10
), pp.
819
842
. 10.1080/01457632.2017.1338856
2.
Baranwal
,
A. K.
, and
Chhabra
,
R. P.
,
2016
, “
Effect of Prandtl Number on Free Convection From Two Cylinders in a Square Enclosure
,”
Heat Transf. Eng.
,
37
(
6
), pp.
545
556
. 10.1080/01457632.2015.1060761
3.
Baranwal
,
A. K.
, and
Chhabra
,
R. P.
,
2016
, “
Free Convection in Confined Power-Law Fluids From Two Side-by-Side Cylinders in a Square Enclosure
,”
Heat Transf. Eng.
,
37
(
18
), pp.
1521
1537
. 10.1080/01457632.2016.1151296
4.
Baranwal
,
A. K.
, and
Chhabra
,
R. P.
,
2017
, “
Effect of Fluid Yield Stress on Natural Convection From Horizontal Cylinders in a Square Enclosure
,”
Heat Transf. Eng.
,
38
(
6
), pp.
557
577
. 10.1080/01457632.2016.1200373
5.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids, Volume 1: Fluid Dynamics
, 2nd ed.,
Wiley
,
New York, NY
.
6.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology
,
Butterworth-Heinemann
,
Oxford, UK
.
7.
Chhabra
,
R. P.
,
2006
,
Bubbles, Drops, and Particles in Non-Newtonian Fluids
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
8.
Barnes
,
H. A.
,
1999
, “
The Yield Stress—A Review or ‘παντα ρει’—Everything Flows?
,”
J. Non-Newt. Fluid Mech.
,
81
, pp.
133
178
. 10.1016/S0377-0257(98)00094-9
9.
Bird
,
R. B.
,
Dai
,
G. C.
, and
Yarusso
,
B. J.
,
1983
, “
The Rheology and Flow of Visco-Plastic Materials
,”
Rev. Chem. Eng.
,
1
(
1
), pp.
1
70
. 10.1515/revce-1983-0102
10.
Mukherjee
,
S.
,
Gupta
,
A. K.
, and
Chhabra
,
R. P.
,
2017
, “
Laminar Forced Convection in Power-Law and Bingham Plastic Fluids in Ducts of Semi-Circular and Other Cross-Sections
,”
Int. J. Heat Mass Transf.
,
104
, pp.
112
141
. 10.1016/j.ijheatmasstransfer.2016.08.007
11.
Filali
,
A.
,
Khezzar
,
L.
, and
Mitsoulis
,
E.
,
2013
, “
Some Experiences With the Numerical Simulation of Newtonian and Bingham Fluids in Dip Coating
,”
Comput. Fluids
,
82
, pp.
110
121
. 10.1016/j.compfluid.2013.04.024
12.
Chhabra
,
R. P.
,
Comiti
,
J.
, and
Machač
,
I.
,
2001
, “
Flow of Non-Newtonian Fluids in Fixed and Fluidised Beds
,”
Chem. Eng. Sci.
,
56
(
1
), pp.
1
27
. 10.1016/S0009-2509(00)00207-4
13.
Chhabra
,
R. P.
,
2003
, “
Fluid Mechanics and Heat Transfer With Non-Newtonian Liquids in Mechanically Agitated Vessels
,”
Adv. Heat Transf.
,
37
, pp.
77
178
. 10.1016/S0065-2717(03)37002-9
14.
Coussot
,
P.
,
2014
, “
Yield Stress Fluid Flows: A Review of Experimental Data
,”
J. Non-Newt. Fluid Mech.
,
211
, pp.
31
49
. 10.1016/j.jnnfm.2014.05.006
15.
Baïri
,
A.
,
Zarco-Pernia
,
E.
,
De María
,
G.
, and
M
,
J.
,
2014
, “
A Review on Natural Convection in Enclosures for Engineering Applications: The Particular Case of the Parallelogrammic Diode Cavity
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
304
322
. 10.1016/j.applthermaleng.2013.10.065
16.
Kamiyo
,
O. M.
,
Angeli
,
D.
,
Barozzi
,
G. S.
,
Collins
,
M. W.
,
Olunloyo
,
V. O. S.
, and
Talabi
,
S. O.
,
2010
, “
A Comprehensive Review of Natural Convection in Triangular Enclosures
,”
ASME Appl. Mech. Rev.
,
63
(
6
), p.
060801
. 10.1115/1.4004290
17.
Turan
,
O.
,
Chakraborty
,
N.
, and
Poole
,
R. J.
,
2010
, “
Laminar Natural Convection of Bingham Fluids in a Square Enclosure With Differentially Heated Side Walls
,”
J. Non-Newt. Fluid Mech.
,
165
(
15–16
), pp.
901
913
. 10.1016/j.jnnfm.2010.04.013
18.
Turan
,
O.
,
Sachdeva
,
A.
,
Poole
,
R. J.
, and
Chakraborty
,
N.
,
2011
, “
Laminar Natural Convection of Bingham Fluids in a Square Enclosure With Vertical Walls Subjected to Constant Heat Flux
,”
Numer. Heat Transf. Part A Appl.
,
60
(
5
), pp.
381
409
. 10.1080/10407782.2011.594417
19.
Turan
,
O.
,
Poole
,
R. J.
, and
Chakraborty
,
N.
,
2012
, “
Boundary Condition Effects on Natural Convection of Bingham Fluids in a Square Enclosure With Differentially Heated Horizontal Walls
,”
Comput. Therm. Sci.
,
4
(
1
), pp.
77
97
. 10.1615/ComputThermalScien.2012004759
20.
Huilgol
,
R. R.
, and
Kefayati
,
G. H. R.
,
2015
, “
Natural Convection Problem in a Bingham Fluid Using the Operator-Splitting Method
,”
J. Non-Newt. Fluid Mech.
,
220
, pp.
22
32
. 10.1016/j.jnnfm.2014.06.005
21.
Hassan
,
M. A.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2013
, “
Natural Convection of Viscoplastic Fluids in a Square Enclosure
,”
J. Heat Transf.
,
135
(
12
), p.
122501
. 10.1115/1.4024896
22.
Mitsoulis
,
E.
, and
Zisis
,
T.
,
2001
, “
Flow of Bingham Plastics in a Lid-Driven Square Cavity
,”
J. Non-Newt. Fluid Mech.
,
101
(
1–3
), pp.
173
180
. 10.1016/S0377-0257(01)00147-1
23.
Neofytou
,
P.
,
2005
, “
A 3rd Order Upwind Finite Volume Method for Generalised Newtonian Fluid Flows
,”
Adv. Eng. Softw.
,
36
(
10
), pp.
664
680
. 10.1016/j.advengsoft.2005.03.011
24.
Syrakos
,
A.
,
Georgiou
,
G. C.
, and
Alexandrou
,
A. N.
,
2013
, “
Solution of the Square Lid-Driven Cavity Flow of a Bingham Plastic Using the Finite Volume Method
,”
J. Non-Newt. Fluid Mech.
,
195
, pp.
19
31
. 10.1016/j.jnnfm.2012.12.008
25.
Kefayati
,
G. H. R.
, and
Huilgol
,
R. R.
,
2016
, “
Lattice Boltzmann Method for Simulation of Mixed Convection of a Bingham Fluid in a Lid-Driven Cavity
,”
Int. J. Heat Mass Transf.
,
103
, pp.
725
743
. 10.1016/j.ijheatmasstransfer.2016.07.102
26.
Nirmalkar
,
N.
,
Bose
,
A.
, and
Chhabra
,
R. P.
,
2014
, “
Free Convection From a Heated Circular Cylinder in Bingham Plastic Fluids
,”
Int. J. Therm. Sci.
,
83
, pp.
33
44
. 10.1016/j.ijthermalsci.2014.04.004
27.
Patel
,
S. A.
, and
Chhabra
,
R. P.
,
2016
, “
Laminar Free Convection in Bingham Plastic Fluids From an Isothermal Elliptic Cylinder
,”
J. Thermophys. Heat Transf.
,
30
(
1
), pp.
152
167
. 10.2514/1.T4578
28.
Karimfazli
,
I.
,
Frigaard
,
I. A.
, and
Wachs
,
A.
,
2015
, “
Thermal Plumes in Viscoplastic Fluids: Flow Onset and Development
,”
J. Fluid Mech.
,
787
, pp.
474
507
. 10.1017/jfm.2015.639
29.
Kim
,
B. S.
,
Lee
,
D. S.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2008
, “
A Numerical Study of Natural Convection in a Square Enclosure With a Circular Cylinder at Different Vertical Locations
,”
Int. J. Heat Mass Transf.
,
51
(
7–8
), pp.
1888
1906
. 10.1016/j.ijheatmasstransfer.2007.06.033
30.
Lee
,
J. M.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2010
, “
Natural Convection in a Square Enclosure With a Circular Cylinder at Different Horizontal and Diagonal Locations
,”
Int. J. Heat Mass Transf.
,
53
(
25–26
), pp.
5905
5919
. 10.1016/j.ijheatmasstransfer.2010.07.043
31.
Shyam
,
R.
,
Sairamu
,
M.
,
Nirmalkar
,
N.
, and
Chhabra
,
R. P.
,
2013
, “
Free Convection From a Heated Circular Cylinder in Confined Power-Law Fluids
,”
Int. J. Therm. Sci.
,
74
, pp.
156
173
. 10.1016/j.ijthermalsci.2013.06.005
32.
Hussain
,
S. H.
, and
Hussein
,
A. K.
,
2010
, “
Numerical Investigation of Natural Convection Phenomena in a Uniformly Heated Circular Cylinder Immersed in Square Enclosure Filled With Air at Different Vertical Locations
,”
Int. Commun. Heat Mass Transf.
,
37
(
8
), pp.
1115
1126
. 10.1016/j.icheatmasstransfer.2010.05.016
33.
Yoon
,
H. S.
,
Jung
,
J. H.
, and
Park
,
Y. G.
,
2012
, “
Natural Convection in a Square Enclosure With Two Horizontal Cylinders
,”
Numer. Heat Transf. Part A Appl.
,
62
(
9
), pp.
701
721
. 10.1080/10407782.2012.709438
34.
Yoon
,
H. S.
,
Park
,
Y. G.
, and
Jung
,
J. H.
,
2014
, “
Natural Convection in a Square Enclosure With Differentially Heated Two Horizontal Cylinders
,”
Numer. Heat Transf. Part A Appl.
,
65
(
4
), pp.
302
326
. 10.1080/10407782.2013.831679
35.
Park
,
Y. G.
,
Yoon
,
H. S.
, and
Ha
,
M. Y.
,
2012
, “
Natural Convection in Square Enclosure With Hot and Cold Cylinders at Different Vertical Locations
,”
Int. J. Heat Mass Transf.
,
55
(
25–26
), pp.
7911
7925
. 10.1016/j.ijheatmasstransfer.2012.08.012
36.
Park
,
Y. G.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2013
, “
Study on Natural Convection in a Cold Square Enclosure With a Pair of Hot Horizontal Cylinders Positioned at Different Vertical Locations
,”
Int. J. Heat Mass Transf.
,
65
, pp.
696
712
. 10.1016/j.ijheatmasstransfer.2013.06.059
37.
Karki
,
P.
,
Yadav
,
A. K.
, and
Perumal
,
D. A.
,
2019
, “
Study of Adiabatic Obstacles on Natural Convection in a Square Cavity Using Lattice Boltzmann Method
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
034502
. 10.1115/1.4041875
38.
Ashrafizadeh
,
A.
, and
Hosseinjani
,
A. A.
,
2017
, “
A Phenomenological Study on the Convection Heat Transfer Around Two Enclosed Rotating Cylinders via an Immersed Boundary Method
,”
Int. J. Heat Mass Transf.
,
107
, pp.
667
685
. 10.1016/j.ijheatmasstransfer.2016.11.078
39.
Sairamu
,
M.
,
Nirmalkar
,
N.
, and
Chhabra
,
R. P.
,
2013
, “
Natural Convection From a Circular Cylinder in Confined Bingham Plastic Fluids
,”
Int. J. Heat Mass Transf.
,
60
(
1
), pp.
567
581
. 10.1016/j.ijheatmasstransfer.2013.01.024
40.
Dutta
,
A.
,
Gupta
,
A. K.
,
Mishra
,
G.
, and
Chhabra
,
R. P.
,
2018
, “
Effect of Fluid Yield Stress and of Angle of Tilt on Natural Convection From a Square Bar in a Square Annulus
,”
Comput. Fluids
,
160
, pp.
138
163
. 10.1016/j.compfluid.2017.10.020
41.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw-Hill
,
Hightstown, New Jersey
.
42.
Macosko
,
C. W.
,
1994
,
Rheology: Principles, Measurements and Applications
,
Wiley-VCH
,
New York
.
43.
Papanastasiou
,
T. C.
,
1987
, “
Flows of Materials With Yield
,”
J. Rheol.
,
31
(
5
), pp.
385
404
. 10.1122/1.549926
44.
O’Donovan
,
E. J.
, and
Tanner
,
R. I.
,
1984
, “
Numerical Study of the Bingham Squeeze Film Problem
,”
J. Non-Newt. Fluid Mech.
,
15
(
1
), pp.
75
83
. 10.1016/0377-0257(84)80029-4
45.
Bercovier
,
M.
, and
Engelman
,
M.
,
1980
, “
A Finite-Element Method for Incompressible Non-Newtonian Flows
,”
J. Comput. Phys.
,
36
(
3
), pp.
313
326
. 10.1016/0021-9991(80)90163-1
46.
Dean
,
E. J.
,
Glowinski
,
R.
, and
Guidoboni
,
G.
,
2007
, “
On the Numerical Simulation of Bingham Visco-Plastic Flow: Old and New Results
,”
J. Non-Newt. Fluid Mech.
,
142
(
1–3
), pp.
36
62
. 10.1016/j.jnnfm.2006.09.002
47.
Sanchez
,
F.
,
1998
, “
Application of a First-Order Operator Splitting Method to Bingham Fluid Flow Simulation
,”
Comput. Math. Appl.
,
36
(
3
), pp.
71
86
. 10.1016/S0898-1221(98)00130-8
48.
Glowinski
,
R.
, and
Oden
,
J. T.
,
1985
, “
Numerical Methods for Nonlinear Variational Problems
,”
ASME J. Appl. Mech.
,
52
(
3
), pp.
739
740
. 10.1115/1.3169136
49.
Frigaard
,
I. A.
, and
Nouar
,
C.
,
2005
, “
On the Usage of Viscosity Regularisation Methods for Visco-Plastic Fluid Flow Computation
,”
J. Non-Newt. Fluid Mech.
,
127
(
1
), pp.
1
26
. 10.1016/j.jnnfm.2005.01.003
50.
Mitsoulis
,
E.
, and
Tsamopoulos
,
J.
,
2017
, “
Numerical Simulations of Complex Yield-Stress Fluid Flows
,”
Rheol. Acta
,
56
(
3
), pp.
231
258
. 10.1007/s00397-016-0981-0
51.
Saramito
,
P.
, and
Wachs
,
A.
,
2017
, “
Progress in Numerical Simulation of Yield Stress Fluid Flows
,”
Rheol. Acta
,
56
(
3
), pp.
211
230
. 10.1007/s00397-016-0985-9
52.
Gupta
,
A. K.
,
Gupta
,
S.
, and
Chhabra
,
R. P.
,
2017
, “
Natural Convection in Bingham Plastic Fluids From an Isothermal Spheroid: Effects of Fluid Yield Stress, Viscous Dissipation and Temperature-Dependent Viscosity
,”
Korea Aust. Rheol. J.
,
29
(
3
), pp.
163
184
. 10.1007/s13367-017-0018-y
53.
Turan
,
O.
,
Sachdeva
,
A.
,
Chakraborty
,
N.
, and
Poole
,
R. J.
,
2011
, “
Laminar Natural Convection of Power-Law Fluids in a Square Enclosure With Differentially Heated Side Walls Subjected to Constant Temperatures
,”
J. Non-Newt. Fluid Mech.
,
166
(
17–18
), pp.
1049
1063
. 10.1016/j.jnnfm.2011.06.003
You do not currently have access to this content.