Abstract

An autonomous adaptive model predictive control (MPC) architecture is presented for control of heating, ventilation, and air condition (HVAC) systems to maintain indoor temperature while reducing energy use. Although equipment use and occupant changes with time, existing MPC methods are not capable of automatically relearning models and computing control decisions reliably for extended periods without intervention from a human expert. We seek to address this weakness. Two major features are embedded in the proposed architecture to enable autonomy: (i) a system identification algorithm from our prior work that periodically re-learns building dynamics and unmeasured internal heat loads from data without requiring re-tuning by experts. The estimated model is guaranteed to be stable and has desirable physical properties irrespective of the data; (ii) an MPC planner with a convex approximation of the original nonconvex problem. The planner uses a descent and convergent method, with the underlying optimization problem being feasible and convex. A yearlong simulation with a realistic plant shows that both of the features of the proposed architecture—periodic model and disturbance update and convexification of the planning problem—are essential to get performance improvement over a commonly used baseline controller. Without these features, long-term energy savings from MPC can be small while with them, the savings from MPC become substantial.

References

1.
United States Energy Information Administration,
2018
. Annual Energy Outlook, April, https://www.eia.gov/outlooks/archive/aeo18/pdf/AEO2018.pdf
2.
Serale
,
G.
,
Fiorentini
,
M.
,
Capozzoli
,
A.
,
Bernardini
,
D.
, and
Bemporad
,
A.
,
2018
, “
Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities
,”
Energies
,
11
(
3
), p.
631
.
3.
Castilla
,
M.
,
Álvarez
,
J.
,
Normey-Rico
,
J.
, and
Rodríguez
,
F.
,
2014
, “
Thermal Comfort Control Using a Non-linear MPC Strategy: A Real Case of Study in a Bioclimatic Building
,”
J. Process. Control.
,
24
(
6
), pp.
703
713
.
4.
Bengea
,
S. C.
,
Kelman
,
A. D.
,
Borrelli
,
F.
,
Taylor
,
R.
, and
Narayanan
,
S.
,
2014
, “
Implementation of Model Predictive Control for An HVAC System in a Mid-Size Commercial Building
,”
HVAC&R Res.
,
20
(
1
), pp.
121
135
.
5.
De Coninck
,
R.
, and
Helsen
,
L.
,
2016
, “
Practical Implementation and Evaluation of Model Predictive Control for An Office Building in Brussels
,”
Energy Buil.
,
111
, pp.
290
298
.
6.
Madsen
,
H.
, and
Holst
,
J.
,
1995
, “
Estimation of Continuous-Time Models for the Heat Dynamics of a Building
,”
Energy Buil.
,
22
(
1
), pp.
67
79
.
7.
Berthou
,
T.
,
Stabat
,
P.
,
Salvazet
,
R.
, and
Marchio
,
D.
,
2014
, “
Development and Validation of a Gray Box Model to Predict Thermal Behavior of Occupied Office Buildings
,”
Energy Buil.
,
74
, pp.
91
100
.
8.
Kim
,
D.
,
Cai
,
J.
,
Ariyur
,
K. B.
, and
Braun
,
J. E.
,
2016
, “
System Identification for Building Thermal Systems Under the Presence of Unmeasured Disturbances in Closed Loop Operation: Lumped Disturbance Modeling Approach
,”
Build. Environ.
,
107
, pp.
169
180
.
9.
Coffman
,
A. R.
, and
Barooah
,
P.
,
2018
, “
Simultaneous Identification of Dynamic Model and Occupant-Induced Disturbance for Commercial Buildings
,”
Buil. Environ.
,
128
, pp.
153
160
.
10.
Zeng
,
T.
,
Brooks
,
J.
, and
Barooah
,
P.
,
2021
, “
Simultaneous Identification of Linear Building Dynamic Model and Disturbance Using Sparsity-Promoting Optimization
,”
Automatica
,
129
, p.
109631
.
11.
Smarra
,
F.
,
Jain
,
A.
,
de Rubeis
,
T.
,
Ambrosini
,
D.
,
D’Innocenzo
,
A.
, and
Mangharam
,
R.
,
2018
, “
Data-Driven Model Predictive Control Using Random Forests for Building Energy Optimization and Climate Control
,”
Appl. Energy
,
226
, pp.
1252
1272
.
12.
Kelman
,
A.
, and
Borrelli
,
F.
,
2011
, “
Bilinear Model Predictive Control of a HVAC System Using Sequential Quadratic Programming
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
9869
9874
.
13.
Ma
,
Y.
,
Matuško
,
J.
, and
Borrelli
,
F.
,
2015
, “
Stochastic Model Predictive Control for Building HVAC Systems: Complexity and Conservatism
,”
IEEE Trans. Control Syst. Tech.
,
23
(
1
), pp.
101
116
.
14.
Parisio
,
A.
,
Fabietti
,
L.
,
Molinari
,
M.
,
Varagnolo
,
D.
, and
Johansson
,
K. H.
,
2014
, “
Control of HVAC Systems Via Scenario-Based Explicit MPC
,”
53rd IEEE Conference on Decision and Control
,
Los Angeles, CA
,
IEEE, pp. 5201–5207
.
15.
Atam
,
E.
, and
Helsen
,
L.
,
2015
, “
A Convex Approach to a Class of Non-Convex Building HVAC Control Problems: Illustration by Two Case Studies
,”
Energy Build.
,
93
, pp.
269
281
.
16.
Zeng
,
T.
, and
Barooah
,
P.
,
July 2020
, “
An Autonomous MPC Scheme for Energy-Efficient Control of Building HVAC Systems
,”
2020 American Control Conference (ACC)
,
Denver, CO
,
IEEE, pp. 4213–4218
.
17.
Razmara
,
M.
,
Maasoumy
,
M.
,
Shahbakhti
,
M.
, and
Robinett III
,
R.
,
2015
, “
Optimal Exergy Control of Building HVAC System
,”
Appl. Energy
,
156
, pp.
555
565
.
18.
Koehler
,
S.
, and
Borrelli
,
F.
,
2013
, “
Building Temperature Distributed Control Via Explicit MPC and Trim and Respond Methods
,”
2013 European Control Conference (ECC)
,
Zurich, Switzerland
,
IEEE, pp. 4334–4339
.
19.
Zeng
,
T.
, and
Barooah
,
P.
,
2020
, “
Identification of Network Dynamics and Disturbance for a Multi-Zone Building
,”
IEEE Trans. Control Syst. Tech.
,
28
(
5
), pp.
2061
2068
.
20.
Oldewurtel
,
F.
,
Parisio
,
A.
,
Jones
,
C. N.
,
Gyalistras
,
D.
,
Gwerder
,
M.
,
Stauch
,
V.
,
Lehmann
,
B.
, and
Morari
,
M.
,
2012
, “
Use of Model Predictive Control and Weather Forecasts for Energy Efficient Building Climate Control
,”
Energy Buil.
,
45
, pp.
15
27
.
21.
Prívara
,
S.
,
Širokỳ
,
J.
,
Ferkl
,
L.
, and
Cigler
,
J.
,
2011
, “
Model Predictive Control of a Building Heating System: The First Experience
,”
Energy Buil.
,
43
(
2–3
), pp.
564
572
.
22.
Raman
,
N. S.
,
Devaprasad
,
K.
,
Chen
,
B.
,
Ingley
,
H. A.
, and
Barooah
,
P.
,
2020
, “
Model Predictive Control for Energy-Efficient HVAC Operation with Humidity and Latent Heat Considerations
,”
Appl. Energy
,
279
, p.
115765
.
23.
Hou
,
X.
,
Xiao
,
Y.
,
Cai
,
J.
,
Hu
,
J.
, and
Braun
,
J. E.
,
2017
, “
Distributed Model Predictive Control Via Proximal Jacobian ADMM for Building Control Applications
,”
2017 American Control Conference (ACC)
,
Seattle, WA
,
IEEE, pp. 37–43
.
24.
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
2017
. ANSI/ASHRAE Standard 55-2017, Thermal Environmental Conditions for Human Occupancy.
25.
ASHRAE
,
2016
. ANSI/ASHRAE Standard 62.1-2016, Ventilation for Acceptable Air Quality.
26.
Raman
,
N. S.
, and
Barooah
,
P.
,
2020
, “
On the Round-Trip Efficiency of An HVAC-Based Virtual Battery
,”
IEEE Trans. Smart Grid
,
11
(
1
), pp.
403
410
.
27.
Lipp
,
T.
, and
Boyd
,
S.
,
2016
, “
Variations and Extension of the Convex-Concave Procedure
,”
Optim. Eng.
,
17
(
2
), pp.
263
287
.
28.
McCormick
,
G. P.
,
1976
, “
Computability of Global Solutions to Factorable Nonconvex Programs: Part I–Convex Underestimating Problems
,”
Math. Program.
,
10
(
1
), pp.
147
175
.
29.
Wendell
,
R. E.
, and
Hurter Jr
,
A. P.
,
1976
, “
Minimization of a Non-Separable Objective Function Subject to Disjoint Constraints
,”
Operat. Res.
,
24
(
4
), pp.
643
657
.
30.
d’Aspremont
,
A.
, and
Boyd
,
S.
,
2003
, “
Relaxations and Randomized Methods for Nonconvex QCQPs
,”
EE392o Class Notes, Stanford Univ.
,
1
, pp.
1
16
.
31.
Sherali
,
H. D.
, and
Alameddine
,
A.
,
1992
, “
A New Reformulation-Linearization Technique for Bilinear Programming Problems
,”
J. Global Optim.
,
2
(
4
), pp.
379
410
.
32.
Gorski
,
J.
,
Pfeuffer
,
F.
, and
Klamroth
,
K.
,
2007
, “
Biconvex Sets and Optimization With Biconvex Functions: A Survey and Extensions
,”
Math. Methods Operat. Res.
,
66
(
3
), pp.
373
407
.
33.
Floudas
,
C. A.
, and
Visweswaran
,
V.
,
1990
, “
A Global Optimization Algorithm (gop) for Certain Classes of Nonconvex Nlps–i. Theory
,”
Comput. Chem. Eng.
,
14
(
12
), pp.
1397
1417
.
34.
Rhodes
,
I.
,
1971
, “
A Tutorial Introduction to Estimation and Filtering
,”
IEEE. Trans. Automat. Contr.
,
16
(
6
), pp.
688
706
.
35.
ASHRAE
,
2009
. The ASHRAE Handbook Fundamentals (SI Edition).
36.
Huang
,
S.
,
Lin
,
Y.
,
Chinde
,
V.
,
Ma
,
X.
, and
Lian
,
J.
,
2021
, “
Simulation-Based Performance Evaluation of Model Predictive Control for Building Energy Systems
,”
Appl. Energy
,
281
, pp.
116027
.
37.
Kircher
,
K. J.
,
Schaefer
,
W.
, and
Max Zhang
,
K.
,
2020
, “
A Computationally Efficient, High-Fidelity Testbed for Building Climate Control
,”
ASME J. Eng. Sustainable Buil. Cities
,
2
(
1
), p.
011002
.
38.
Sengupta
,
M.
,
Xie
,
Y.
,
Lopez
,
A.
,
Habte
,
A.
,
Maclaurin
,
G.
, and
Shelby
,
J.
,
2018
, “
The National Solar Radiation Data Base (NSRDB)
,”
Renewable. Sustainable. Energy. Rev.
,
89
, pp.
51
60
.
39.
Middelkoop
,
T.
,
2020
, An Asynchronous BACnet Logger Written in Python.
40.
Grant
,
M.
, and
Boyd
,
S.
,
2011
, CVX: Matlab Software for Disciplined Convex Programming, version 1.21. http://cvxr.com/cvx
41.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.
42.
Star
,
E.
,
2018
, “
Portfolio Manager
.”
US Energy Use Intensity by Property Type
.
You do not currently have access to this content.