Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper aims to explore the technological limits of the synergy between the solar concentration technique, facilitated by a parabolic concentrator, and the thermoelectric effect induced by a thermoelectric generator within a hybrid photovoltaic-thermal collector, incorporating a ternary nanofluid Cu–Al2O3-MWCNT (multiwalled carbon nanotubes)/water. Each system component is subject to energy balance equations, and the Runge–Kutta fourth-order method is employed to solve the resultant mathematical model. The effects of the concentration ratio (CR), the mass flowrate ṁ, and the type of heat transfer fluid on the system's performance are scrutinized. The simulations are carried out under the meteorological conditions of Ain Salah City in southern Algeria for a moderate wind velocity. The results show better performance when operating ternary nanofluid than other heat transfer fluids. Moreover, the outcomes indicate that by using a 2% volume fraction of nanoparticles of ternary nanofluid, the thermal output, electrical yield, and thermoelectric production reach enhancements of 14.5%, 11.2%, and 22.6%, respectively. Incorporating the solar concentrator resulted in a 3.54 and 5.88 times increase in electrical and thermal powers, respectively. With the growths in ṁ, the temperature of the photovoltaic panel decreases by 53 °C, and the electrical efficiency improves by 34.5%. Correlations encompassing the concentration ratio and mass flowrate for various types of heat transfer fluids are established to predict the technological limits of solar concentration technique in photovoltaic-thermal-thermoelectric generator collectors under the meteorological conditions specific to Ain Salah.

References

1.
Kabir
,
E.
,
Kumar
,
P.
,
Kumar
,
S.
,
Adelodun
,
A. A.
, and
Kim
,
K. H.
,
2018
, “
Solar Energy: Potential and Future Prospects
,”
Renew. Sustain. Energy Rev.
,
82
(
Part 1
), pp.
894
900
.
2.
Capellán-Pérez
,
I.
,
de Castro
,
C.
, and
Arto
,
I.
,
2017
, “
Assessing Vulnerabilities and Limits in the Transition to Renewable Energies: Land Requirements Under 100% Solar Energy Scenarios
,”
Renew. Sustain. Energy Rev.
,
77
, pp.
760
782
.
3.
Kenfack
,
A. Z.
,
Nematchoua
,
M. K.
,
Simo
,
E.
,
Mfoundikou
,
M. N.
,
Fosso
,
J. V. K.
,
Babikir
,
M. H.
, and
Chara-Dackou
,
V. S.
,
2023
, “
Exergetic Optimization of Some Design Parameters of the Hybrid Photovoltaic/Thermal Collector With Bi Fluid Air/Ternary Nanofluid (CuO/MgO/TiO2)
,”
SN Appl. Sci.
,
5
(
8
), p.
226
.
4.
Fu
,
Z.
,
Xue
,
M.
,
Shao
,
Z.
, and
Zhu
,
Q.
,
2024
, “
Performance Evaluation of a Novel Vacuum-Tube PV/T System With Inserted PV Module and Heat Pipe
,”
Renew. Energy
,
223
, p.
120027
.
5.
Kumar Sharma
,
D.
,
Vaishak
,
S.
,
Bhale
,
P. V.
, and
Rathod
,
M. K.
,
2024
, “
Analysis of Water and Refrigerant-Based PV/T Systems With Double Glass PV Modules: An Experimental and Computational Approach
,”
Sol. Energy
,
268
, p.
112296
.
6.
Yildirim
,
M. A.
, and
Cebula
,
A.
,
2024
, “
A Numerical and Experimental Analysis of a Novel Highly-Efficient Water-Based PV/T System
,”
Energy
,
289
, p.
129875
.
7.
Dunne
,
N. A.
,
Liu
,
P.
,
Elbarghthi
,
A. F. A.
,
Yang
,
Y.
,
Dvorak
,
V.
, and
Wen
,
C.
,
2023
, “
Performance Evaluation of a Solar Photovoltaic-Thermal (PV/T) Air Collector System
,”
Energy Convers. Manage.: X
,
20
, p.
100466
.
8.
Mussard
,
M.
,
Vaudrey
,
A.
,
Zhu
,
J.
, and
Foss
,
S. E.
,
2024
, “
A Novel Methodology to Estimate the Cell Temperature of Photovoltaic Thermal Modules: Test With Experimental Data, Prospects, and Limits
,”
ASME J. Sol. Energy Eng.
,
146
(
4
), p.
041009
.
9.
Odeh
,
S.
, and
Aden
,
I.
,
2025
, “
Modeling of a Photovoltaic/Thermal Hybrid Panel for Residential Hot Water System
,”
ASME J. Sol. Energy Eng.
,
147
(
1
), p.
011003
.
10.
Şirin
,
C.
,
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2023
, “
Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer With Aluminum Oxide Nano-embedded Thermal Energy Storage Modification
,”
Sustainability
,
15
(
3
), p.
2422
.
11.
Mazaheri
,
N.
, and
Bahiraei
,
M.
,
2023
, “
Performance Enhancement of a Photovoltaic Thermal System Through Two-Phase Nanofluid Simulation in a Channel Equipped With Novel Artificial Roughness
,”
Appl. Therm. Eng.
,
230
(
Part B
), p.
120709
.
12.
Sheikholeslami
,
M.
, and
Khalili
,
Z.
,
2024
, “
Solar Photovoltaic-Thermal System With Novel Design of Tube Containing Eco-friendly Nanofluid
,”
Renew. Energy
,
222
, p.
119862
.
13.
Öztop
,
H. F.
,
Sahin
,
A. Z.
,
Coşanay
,
H.
, and
Sahin
,
I. H.
,
2023
, “
Three-Dimensional Computational Analysis of Performance Improvement in a Novel Designed Solar Photovoltaic/Thermal System by Using Hybrid Nanofluids
,”
Renew. Energy
,
210
, pp.
832
841
.
14.
Abdalla
,
A. N.
, and
Shahsavar
,
A.
,
2023
, “
An Experimental Comparative Assessment of the Energy and Exergy Efficacy of a Ternary Nanofluid-Based Photovoltaic/Thermal System Equipped With a Sheet-and-Serpentine Tube Collector
,”
J. Cleaner Prod.
,
395
, p.
136460
.
15.
Cabral
,
D.
,
Gomes
,
J.
,
Hayati
,
A.
, and
Karlsson
,
B.
,
2021
, “
Experimental Investigation of a CPVT Collector Coupled With a Wedge PVT Receiver
,”
Sol. Energy
,
215
, pp.
335
345
.
16.
Hussain
,
M. I.
, and
Kim
,
J. T.
,
2019
, “
Energy and Economic Potential of a Concentrated Photovoltaic/Thermal (CPV/T) System for Buildings in South Korea
,”
J. Asian Archit. Build. Eng.
,
18
(
2
), pp.
139
144
.
17.
Vignesh
,
N.
,
Arunachala
,
U. C.
, and
Varun
,
K.
,
2023
, “
Innovative Conceptual Approach in Concentrated Solar PV/Thermal System Using Fresnel Lens as the Concentrator
,”
Energy Sources Part A
,
45
(
4
), pp.
10122
10143
.
18.
Zhang
,
W.
,
Zhong
,
J.
,
Xie
,
L.
,
Li
,
J.
,
Zeng
,
X.
,
Guo
,
J.
,
Yang
,
K.
, et al.
,
2024
, “
Performance Analysis of a Novel Water/Air CPV/T System With 2D-Asymmetric Compound Parabolic Concentrator
,”
Sol. Energy
,
274
, p.
112563
.
19.
Zhou
,
H.
,
Cai
,
J.
,
Zhang
,
T.
, and
Shi
,
Z.
,
2023
, “
Sensitivity Analysis of the Concentrated Photovoltaic/Thermal Solar Air Collector With PCM
,”
2023 7th International Conference on Energy and Environmental Science ICEES 2023, Environmental Science and Engineering
,
Changsha, China
,
Nov. 6–10
, p.
201
.
20.
Shanmugam
,
M.
, and
Maganti
,
L. S.
,
2023
, “
Evaluation of Heat Flux Distribution on Flat Plate Compound Parabolic Concentrator With Different Geometric Indices
,”
ASME J. Sol. Energy Eng.
,
145
(
5
), p.
051007
.
21.
Gupta
,
A.
,
Agrawal
,
S.
, and
Pal
,
Y.
,
2020
, “
Performance Evaluation of Hybrid Photovoltaic Thermal Thermoelectric Collector Using Grasshopper Optimization Algorithm With Simulated Annealing
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
061004
.
22.
Kolahan
,
A.
,
Maadi
,
R. Z.
,
Kazemian
,
A.
,
Schenone
,
G.
, and
Ma
,
T.
,
2020
, “
Semi-3D Transient Simulation of a Nanofluid-Base Photovoltaic Thermal System Integrated With a Thermoelectric Generator
,”
Energy Convers. Manage.
,
220
, p.
113073
.
23.
Salari
,
A.
,
Parcheforosh
,
A.
,
Hakkaki-Fard
,
A.
, and
Amadeh
,
A.
,
2020
, “
A Numerical Study on a Photovoltaic Thermal System Integrated With a Thermoelectric Generator Module
,”
Renew. Energy
,
153
, pp.
1261
1271
.
24.
Nazri
,
N. S.
,
Fudholi
,
A.
,
Mustafa
,
W.
,
Yen
,
C. H.
,
Mohammad
,
M.
,
Ruslan
,
M. H.
, and
Sopian
,
K.
,
2019
, “
Exergy and Improvement Potential of Hybrid Photovoltaic Thermal/Thermoelectric (PVT/TE) Air Collector
,”
Renew. Sustain. Energy Rev.
,
111
, pp.
132
144
.
25.
Zhou
,
Y. P.
,
Li
,
M. J.
,
Yang
,
W. W.
, and
He
,
Y. L.
,
2018
, “
The Effect of the Full-Spectrum Characteristics of Nanostructure on the PV-TE Hybrid System Performances Within Multi-physics Coupling Process
,”
Appl. Energy
,
213
, pp.
169
178
.
26.
Selimefendigil
,
F.
,
Okulu
,
D.
, and
Öztop
,
H. F.
,
2023
, “
Photovoltaic Thermal Management by Combined Utilization of Thermoelectric Generator and Power-Law Nanofluid-Assisted Cooling Channel
,”
Sustainability
,
15
(
6
), p.
5424
.
27.
Sheikholeslami
,
M.
,
Khalili
,
Z.
, and
Momayez
,
L.
,
2023
, “
Efficiency Improvement of Ternary Nanofluid Within a Solar Photovoltaic Unit Combined With Thermoelectric Considering Environmental Analysis
,”
Environ. Technol. Innov.
,
32
, p.
103315
.
28.
Khalili
,
Z.
,
Sheikholeslami
,
M.
, and
Momayez
,
L.
,
2023
, “
Hybrid Nanofluid Flow Within Cooling Tube of Photovoltaic Thermoelectric Solar Unit
,”
Sci. Rep.
,
13
(
1
), p.
8202
.
29.
Khanalizadeh
,
A.
,
Astaraei
,
F. R.
,
Heyhat
,
M. M.
, and
Rad
,
M. A. V.
,
2023
, “
Experimental Investigation of a PV/T System Containing a TEG Section Between Water-Based Heat Exchanger and Air-Based Heat Sink
,”
Therm. Sci. Eng. Prog.
,
42
, p.
101909
.
30.
Riahi
,
A.
,
Ben Haj Ali
,
A.
,
Fadhel
,
A.
,
Guizani
,
A.
, and
and Balghouthi
,
M.
,
2020
, “
Performance Investigation of a Concentrating Photovoltaic Thermal Hybrid Solar System Combined With Thermoelectric Generators
,”
Energy Convers. Manage.
,
205
, p.
112377
.
31.
Alnajideen
,
M.
, and
Min
,
G.
,
2022
, “
Hybrid Photovoltaic-Thermoelectric System Using a Novel Spectral Splitting Solar Concentrator
,”
Energy Convers. Manage.
,
251
, p.
114981
.
32.
Sheikholeslami
,
M.
, and
Khalili
,
Z.
,
2024
, “
Energy Management of a Concentrated Photovoltaic-Thermal Unit Utilizing Nanofluid Jet Impingement in Existence of Thermoelectric Module
,”
Eng. Appl. Comput. Fluid Mech.
,
18
(
1
), p.
2297044
.
33.
Sheikholeslami
,
M.
,
Khalili
,
Z.
,
Scardi
,
P.
, and
Ataollahi
,
N.
,
2023
, “
Concentrated Solar Photovoltaic Cell Equipped With Thermoelectric Layer in Presence of Nanofluid Flow Within Porous Heat Sink: Impact of Dust Accumulation
,”
Sustain. Cities Soc.
,
98
, p.
104866
.
34.
Maadi
,
S. R.
,
Khatibi
,
M.
,
Ebrahimnia-Bajestan
,
E.
, and
Wood
,
D.
,
2019
, “
Coupled Thermal-Optical Numerical Modeling of PV/T Module—Combining CFD Approach and Two-Band Radiation DO Model
,”
Energy Convers. Manage.
,
198
, p.
111781
.
35.
Chow
,
T. T.
,
2003
, “
Performance Analysis of Photovoltaic-Thermal Collector by Explicit Dynamic Model
,”
Sol. Energy
,
75
(
2
), pp.
143
152
.
36.
Hissouf
,
M.
,
Feddaoui
,
M.
,
Najim
,
M.
, and
Charef
,
A.
,
2020
, “
Numerical Study of a Covered Photovoltaic-Thermal Collector (PVT) Enhancement Using Nanofluids
,”
Sol. Energy
,
199
, pp.
115
127
.
37.
Jouhara
,
H.
,
Żabnieńska-Góra
,
A.
,
Khordehgah
,
N.
,
Doraghi
,
Q.
,
Ahmad
,
L.
,
Norman
,
L.
,
Axcell
,
B.
,
Wrobel
,
L.
, and
Dai
,
S.
,
2021
, “
Thermoelectric Generator (TEG) Technologies and Applications
,”
Int. J. Thermofluids
,
9
, p.
100063
.
38.
Gu
,
W.
,
Ma
,
T.
,
Song
,
A.
,
Li
,
M.
, and
Shen
,
L.
,
2019
, “
Mathematical Modelling and Performance Evaluation of a Hybrid Photovoltaic-Thermoelectric System
,”
Energy Convers. Manage.
,
198
, p.
111800
.
39.
Bhattarai
,
S.
,
Oh
,
J. H.
,
Euh
,
S. H.
,
Kafle
,
G. K.
, and
Kim
,
D. H.
,
2012
, “
Simulation and Model Validation of Sheet and Tube Type Photovoltaic Thermal Solar System and Conventional Solar Collecting System in Transient States
,”
Sol. Energy Mater. Sol. Cells
,
103
, pp.
184
193
.
40.
Touafek
,
K.
,
Khelifa
,
A.
, and
Adouane
,
M.
,
2014
, “
Theoretical and Experimental Study of Sheet and Tubes Hybrid PVT Collector
,”
Energy Convers. Manage.
,
80
, pp.
71
77
.
41.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
John Wiley & Sons
,
Jefferson City, MO
.
42.
Swinbank
,
W. C.
,
1963
, “
Long-Wave Radiation From Clear Skies
,”
Q. J. R. Meteorol. Soc.
,
89
(
381
), pp.
339
348
.
43.
Watmuff
,
J.
,
Charters
,
W. W. S.
, and
Proctor
,
D.
,
1977
, “
Solar and Wind Induced External Coefficients—Solar Collectors
,”
Cooperation Mediterraneenne Pour L'Energie Solaire, Revue Internationale D'Heliotechnique
,
2nd Quarter 1977
, p.
56
, https://ui.adsabs.harvard.edu/abs/1977cmes.rept…56W/abstract
44.
Hollands
,
K. G. T.
,
Unny
,
T. E.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1976
, “
Free Convective Heat Transfer Across Inclined Air Layers
,”
ASME J. Heat Transfer
,
98
(
2
), pp.
189
193
.
45.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.
46.
Kumar
,
A.
, and
Hassan
,
M. A.
,
2024
, “
Heat Transfer in Flat Tube Car Radiator With CuO–MgO–TiO2 Ternary Hybrid Nanofluid
,”
Powder Technol.
,
434
, p.
19275
.
47.
Rashid
,
U.
,
Liang
,
H.
,
Ahmad
,
H.
,
Abbas
,
M.
,
Iqbal
,
A.
, and
Hamed
,
Y. S.
,
2021
, “
Study of (Ag and TiO2)/Water Nanoparticles Shape Effect on Heat Transfer and Hybrid Nanofluid Flow Toward Stretching Shrinking Horizontal Cylinder
,”
Results Phys.
,
21
, p.
103812
.
48.
Jiang
,
Y.
,
Zhou
,
X.
, and
Wang
,
Y.
,
2020
, “
Effects of Nanoparticle Shapes on Heat and Mass Transfer of Nanofluid Thermocapillary Convection Around a Gas Bubble
,”
Microgravity Sci. Technol.
,
32
(
2
), pp.
167
177
.
49.
Adun
,
H.
,
Mukhtar
,
M.
,
Adedeji
,
M.
,
Agwa
,
T.
,
Ibrahim
,
K. H.
,
Bamisile
,
O.
, and
Dagbasi
,
M.
,
2021
, “
Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance With Single and Hybrid Nanofluids
,”
Energies
,
14
(
15
), p.
4434
.
50.
Mohammed Zayan
,
J.
,
Rasheed
,
A. K.
,
John
,
A.
,
Faris
,
W. F.
,
Aabid
,
A.
,
Baig
,
M.
, and
Alallam
,
B.
,
2023
, “
Synthesis and Characterization of Novel Ternary-Hybrid Nanoparticles as Thermal Additives
,”
Materials
,
16
(
1
), p.
173
.
51.
Manjunatha
,
S.
,
Puneeth
,
V.
,
Gireesha
,
B. J.
, and
Chamkha
,
A. J.
,
2022
, “
Theoretical Study of Convective Heat Transfer in Ternary Nanofluid Flowing Past a Stretching Sheet
,”
J. Appl. Comput. Mech.
,
8
(
4
), pp.
1279
1286
.
52.
Shanmugapriya
,
M.
,
Sundareswaran
,
R.
,
Senthil Kumar
,
P.
, and
Rangasamy
,
G.
,
2022
, “
Impact of Nanoparticle Shape in Enhancing Heat Transfer of Magnetized Ternary Hybrid Nanofluid
,”
Sustain. Energy Technol. Assess.
,
53
(
Part C
), p.
102700
.
53.
Evans
,
D. L.
,
1981
, “
Simplified Method for Predicting Photovoltaic Array Output
,”
Sol. Energy
,
27
(
6
), pp.
555
560
.
54.
Reddy
,
J. N.
,
Anand
,
N. K.
, and
Roy
,
P.
,
2023
,
Finite Element and Finite Volume Methods for Heat Transfer and Fluid Dynamics
,
Cambridge University Press
,
Cambridge
.
55.
Díaz-Cuevas
,
P.
,
Haddad
,
B.
, and
Fernandez-Nunez
,
M.
,
2021
, “
Energy for the Future: Planning and Mapping Renewable Energy. The Case of Algeria
,”
Sustain. Energy Technol. Assess.
,
47
, p.
101445
.
You do not currently have access to this content.