Abstract

An experimental investigation is carried out to analyze the thermo-hydraulic characteristics of a triangular solar air heater duct having transverse ribs with gaps. The roughness parameters, such as non-dimensional pitch (P/e or P¯) and non-dimensional height (e/Dh or e¯) are kept in the range of 4.88–20 and 0.021–0.044, respectively. Reynolds number (Re) is kept in the range of 4000–18,000. Two and three gaps of each of 0.01 m are provided to each odd and even number ribs, respectively. Non-dimensional primary width (w1/W) and non-dimensional secondary width (w2/W) are kept constant at 0.29 and 0.4, respectively. A maximum heat transmission of 3.14 times that of the base model is achieved for the transverse ribs with gaps having non-dimensional pitch and height of 9.76 and 0.044, respectively, at Re = 18,000. In the parametric range, the highest friction factor of 3.88 times the base model is encountered for the non-dimensional pitch and height of 4.88 and 0.044, respectively, at Re = 4000. The highest thermal enhancement ratio of 2.31 is reported for the non-dimensional pitch and height of 9.76 and 0.044, respectively, at Re = 18,000. The correlation for the Nusselt number and friction factor is formulated, agreeing with experimental data within ±12% and ±8% deviation, respectively.

References

1.
Prasad
,
B. N.
, and
Saini
,
J. S.
,
1991
, “
Optimal Thermohydraulic Performance
,”
Sol. Energy
,
47
(
2
), pp.
91
96
.
2.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2022
, “
Implementation of Hybrid Rib-Turbulators on the Thermal Performance of Solar Air Heater Duct: A Collective Review
,”
Sustain. Energy Technol. Assess.
,
52
(
Part D
), p.
102345
.
3.
Mund
,
C.
,
Rathore
,
S. K.
, and
Sahoo
,
R. K.
,
2021
, “
A Review of Solar Air Collectors About Various Modifications for Performance Enhancement
,”
Sol. Energy
,
228
, pp.
140
167
.
4.
Kumar
,
R.
,
Goel
,
V.
,
Kumar
,
A.
,
Khurana
,
S.
,
Singh
,
P.
, and
Bopche
,
S. B.
,
2018
, “
Numerical Investigation of Heat Transfer and Friction Factor in Ribbed Triangular Duct Solar Air Heater Using Computational Fluid Dynamics (CFD)
,”
J. Mech. Sci. Technol.
,
32
(
1
), pp.
399
404
.
5.
Josyula
,
T.
,
Singh
,
S.
, and
Dhiman
,
P.
,
2018
, “
Numerical Investigation of a Solar Air Heater Comprising Longitudinally Finned Absorber Plate and Thermal Energy Storage System
,”
J. Renew. Sustain. Energy
,
10
(
5
), p.
055901
.
6.
Farzan
,
H.
,
Zaim
,
E. H.
, and
Amiri
,
T.
,
2022
, “
Performance Investigation on a New Solar Air Heater Using Phase Change Material/Expanded Metal Mesh Composite as Heat Storage Unit: An Experimental Study
,”
J. Energy Storage
,
47
, p.
103602
.
7.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Analytical Approach for Evaluation of Thermo Hydraulic Performance of Roughened Solar Air Heater
,”
Case Stud. Therm. Eng.
,
8
, pp.
19
31
.
8.
Sivakandhan
,
C.
,
Arjunan
,
T. V.
, and
Matheswaran
,
M. M.
,
2020
, “
Thermo-Hydraulic Performance Enhancement of a New Hybrid Duct Solar Air Heater With Inclined Rib Roughness
,”
Renew. Energy
,
147
, pp.
2345
2357
.
9.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2020
, “
Thermal Enhancement Study of a Transverse Inverted-T Shaped Ribbed Solar Air Heater
,”
Int. Commun. Heat Mass Transf.
,
119
, p.
104922
.
10.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2021
, “
Thermo-Hydraulic Performance Analysis of a Solar Air Heater (SAH) With Quarter-Circular Ribs on the Absorber Plate: A Comparative Study
,”
Int. J. Therm. Sci.
,
161
, p.
106747
.
11.
Jain
,
P. K.
, and
Lanjewar
,
A.
,
2022
, “
Experimental Study of Thermal Augmentation in Solar Air Heater Roughened With Aligned Gaps in V-Rib Roughness With Staggered Element Geometry
,”
Heat Mass Transf.
,
58
(
4
), pp.
531
559
.
12.
Panda
,
S.
, and
Kumar
,
R.
,
2022
, “
Flow Friction and Thermal Performance of Dimple Imprinted Based Solar Air-Heater: A Numerical Study
,”
Numer. Heat Transf. Part A Appl.
,
84
(
1
), pp.
35
53
.
13.
Singh
,
I.
,
Vardhan
,
S.
,
Singh
,
S.
, and
Singh
,
A.
,
2019
, “
Experimental and CFD Analysis of Solar Air Heater Duct Roughened With Multiple Broken Transverse Ribs: A Comparative Study
,”
Sol. Energy
,
188
, pp.
519
532
.
14.
Singh
,
H.
,
Singh
,
H.
,
Bahuguna
,
R.
, and
Kishore
,
C.
,
2022
, “
CFD Analysis of Heat Transfer Characteristics of Rectangular Solar Air Heater With Kite Shaped Roughness
,”
Mater. Today Proc.
,
52
, pp.
2014
2025
.
15.
Rathor
,
Y.
, and
Aharwal
,
K. R.
,
2020
, “
Heat Transfer Enhancement Due to a Staggered Element Using Liquid Crystal Thermography in an Inclined Discrete Rib Roughened Solar Air Heater
,”
Int. Commun. Heat Mass Transf.
,
118
(
September
), p.
104839
.
16.
Singh
,
H.
,
Singh
,
H.
, and
Kishore
,
C.
,
2022
, “
CFD Numerical Investigation of Heat Transfer Characteristics of Y-Shaped Solar Air Heater
,”
Mater. Today Proc.
,
52
(
Part 3
), pp.
2003
2013
.
17.
Kumar
,
S.
,
Das
,
R. K.
, and
Kulkarni
,
K.
,
2022
, “
Comparative Study of Solar Air Heater (SAH) Roughened With Transverse Ribs of NACA 0020 in Forward and Reverse Direction
,”
Case Stud. Therm. Eng.
,
34
, p.
102015
.
18.
Kumar
,
S.
, and
Verma
,
S. K.
,
2022
, “
Heat Transfer and Fluid Flow Analysis of Sinusoidal Protrusion Rib in Solar Air Heater
,”
Int. J. Therm. Sci.
,
172
, p.
107323
.
19.
Agrawal
,
Y.
,
Bhagoria
,
J. L.
,
Gautam
,
A.
,
Chaurasiya
,
P. K.
,
Dhanraj
,
J. A.
,
Solomon
,
J. M.
,
Salyan
,
S.
, et al
,
2022
, “
Experimental Evaluation of Hydrothermal Performance of Solar Air Heater With Discrete Roughened Plate
,”
Appl. Therm. Eng.
,
211
, p.
118379
.
20.
Kumar
,
R.
,
Kumar
,
S.
,
Nadda
,
R.
,
Kumar
,
K.
, and
Goel
,
V.
,
2022
, “
Thermo-Hydraulic Efficiency and Correlation Development of an Indoor Designed Jet Impingement Solar Thermal Collector Roughened With Discrete Multi-arc Ribs
,”
Renew. Energy
,
189
, pp.
1259
1277
.
21.
Jain
,
P. K.
,
Lanjewara
,
A.
,
Bhagoriaa
,
J. L.
,
Jain
,
P. K.
,
Lanjewar
,
A.
, and
Bhagoria
,
J. L.
,
2022
, “
Heat Transfer Analysis of Double Discrete Arc Roughness With Different Relative Rib Altitudes and Relate to a Single Discrete Arc in the Solar Air Heater
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
6806
6828
.
22.
Nidhul
,
K.
,
Yadav
,
A. K.
,
Anish
,
S.
, and
Arunachala
,
U. C.
,
2022
, “
Thermo-Hydraulic and Exergetic Performance of a Cost-Effective Solar Air Heater: CFD and Experimental Study
,”
Renew. Energy
,
184
, pp.
627
641
.
23.
Haldar
,
A.
,
Varshney
,
L.
, and
Verma
,
P.
,
2022
, “
Effect of Roughness Parameters on Performance of Solar Air Heater Having Artificial Wavy Roughness Using CFD
,”
Renew. Energy
,
184
, pp.
266
279
.
24.
Nanjundappa
,
M.
,
2021
, “
Nusselt Number and Friction Factor Correlations for the Solar Air Heater Duct Furnished With Artificial Cube Shaped Roughness Elements on the Absorber Plate
,”
Heat Mass Transf.
,
57
(
12
), pp.
1997
2013
.
25.
Bezbaruah
,
P. J.
,
Das
,
R. S.
, and
Sarkar
,
B. K.
,
2021
, “
Experimental and Numerical Analysis of Solar Air Heater Accoutered With Modified Conical Vortex Generators in a Staggered Fashion
,”
Renew. Energy
,
180
, pp.
109
131
.
26.
Pandey
,
N. K.
, and
Bajpai
,
V. K.
,
2016
, “
Experimental Investigation of Heat Transfer and Friction Characteristics of Arc-Shaped Roughness Elements Having Central Gaps on the Absorber Plate of Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
041005
.
27.
Shakya
,
S. K.
,
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2023
, “
CFD Study of Thermo-Fluid Characteristics of Solar Air Heater Duct Using W-Shaped Rib Roughened Collector Plate
,”
ASME J. Heat Transfer-Trans. ASME
,
145
(
2
), p.
022901
.
28.
Jain
,
S. K.
,
Agrawal
,
G. D.
,
Misra
,
R.
,
Verma
,
P.
,
Rathore
,
S.
, and
Jamuwa
,
D. K.
,
2019
, “
Performance Investigation of a Triangular Solar Air Heater Duct Having Broken Inclined Roughness Using Computational Fluid Dynamics
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061008
.
29.
Manjunath
,
M. S.
,
Karanth
,
K. V.
, and
Sharma
,
N. Y.
,
2019
, “
Numerical Analysis of Flat Plate Solar Air Heater Integrated With an Array of Pin Fins on Absorber Plate for Enhancement in Thermal Performance
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051008
.
30.
Patel
,
S. S.
, and
Lanjewar
,
A.
,
2020
, “
Heat Transfer and Friction Factor Correlations for Solar Air Heater With Gap in V-Rib With Symmetrical Gap and Staggered Ribs
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031018
.
31.
Kumar
,
R.
,
Varun
, and
Kumar
,
A.
,
2016
, “
Thermal and Fluid Dynamic Characteristics of Flow Through Triangular Cross-Sectional Duct: A Review
,”
Renew. Sustain. Energy Rev.
,
61
, pp.
123
140
.
32.
Bharadwaj
,
G.
,
Varun
,
Kumar
,
R.
, and
Sharma
,
A.
,
2017
, “
Heat Transfer Augmentation and Flow Characteristics in Ribbed Triangular Duct Solar Air Heater: An Experimental Analysis
,”
Int. J. Green Energy
,
14
(
7
), pp.
587
598
.
33.
Kumar
,
R.
, and
Goel
,
V.
,
2021
, “
Unconventional Solar Air Heater With Triangular Flow-Passage: A CFD Based Comparative Performance Assessment of Different Cross-Sectional Rib-Roughnesses
,”
Renew. Energy
,
172
, pp.
1267
1278
.
34.
Goel
,
V.
,
Kumar
,
R.
,
Bhattacharyya
,
S.
,
Tyagi
,
V. V.
, and
Abusorrah
,
A. M.
,
2021
, “
A Comprehensive Parametric Investigation of Hemispherical Cavities on Thermal Performance and Flow-Dynamics in the Triangular-Duct Solar-Assisted Air-Heater
,”
Renew. Energy
,
173
, pp.
896
912
.
35.
Kumar
,
R.
,
Goel
,
V.
, and
Kumar
,
A.
,
2018
, “
Investigation of Heat Transfer Augmentation and Friction Factor in Triangular Duct Solar Air Heater Due to Forward Facing Chamfered Rectangular Ribs: A CFD Based Analysis
,”
Renew. Energy
,
115
, pp.
824
835
.
36.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2022
, “
Thermo-Fluid Analysis of a Pentagonal Ribbed Triangular Solar Air Heater Duct (TSAHD): A Three-Dimensional Numerical Investigation
,”
Int. Commun. Heat Mass Transf.
,
137
, p.
106258
.
37.
Sahu
,
M. M.
, and
Bhagoria
,
J. L.
,
2005
, “
Augmentation of Heat Transfer Coefficient by Using 90 deg Broken Transverse Ribs on Absorber Plate of Solar Air Heater
,”
Renew. Energy
,
30
(
13
), pp.
2057
2073
.
38.
Tanda
,
G.
,
2004
, “
Heat Transfer in Rectangular Channels With Transverse and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transf.
,
47
(
2
), pp.
229
243
.
39.
Hans
,
V. S.
,
Gill
,
R. S.
, and
Singh
,
S.
,
2017
, “
Heat Transfer and Friction Factor Correlations for a Solar Air Heater Duct Roughened Artificially With Broken Arc Ribs
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
77
89
.
40.
Gill
,
R. S.
,
Hans
,
V. S.
,
Saini
,
J. S.
, and
Singh
,
S.
,
2017
, “
Investigation on Performance Enhancement Due to Staggered Piece in a Broken Arc Rib Roughened Solar Air Heater Duct
,”
Renew. Energy
,
104
, pp.
148
162
.
41.
Ravi
,
R. K.
, and
Saini
,
R. P.
,
2016
, “
Experimental Investigation on Performance of a Double Pass Artificial Roughened Solar Air Heater Duct Having Roughness Elements of the Combination of Discrete Multi V Shaped and Staggered Ribs
,”
Energy
,
116
, pp.
507
516
.
42.
Kumar
,
A.
,
Bhagoria
,
J. L.
, and
Sarviya
,
R. M.
,
2009
, “
Heat Transfer and Friction Correlations for Artificially Roughened Solar Air Heater Duct With Discrete W-Shaped Ribs
,”
Energy Convers. Manage
,
50
(
8
), pp.
2106
2117
.
43.
Aharwal
,
K. R.
,
Gandhi
,
B. K.
, and
Saini
,
J. S.
,
2009
, “
Heat Transfer and Friction Characteristics of Solar Air Heater Ducts Having Integral Inclined Discrete Ribs on Absorber Plate
,”
Int. J. Heat Mass Transf.
,
52
(
25–26
), pp.
5970
5977
.
44.
Misra
,
R.
,
Singh
,
J.
,
Jain
,
S. K.
,
Faujdar
,
S.
,
Agrawal
,
M.
,
Mishra
,
A.
,
Goyal
,
P. K.
,
Kumar
,
S.
,
Faujdar
,
S.
, and
Agrawal
,
M.
,
2020
, “
Prediction of Behavior of Triangular Solar Air Heater Duct Using V-Down Rib With Multiple Gaps and Turbulence Promoters as Artificial Roughness: A CFD Analysis
,”
Int. J. Heat Mass Transf.
,
162
, p.
120376
.
45.
Pandey
,
N. K.
,
Sharma
,
A.
,
Yadav
,
N.
,
Singh
,
A. P.
, and
Bajpai
,
V. K.
,
2022
, “
Fluid Flow and Heat Transfer Evaluation and Optimisation of Solar-Assisted Air-Heater Having Multi-arcs With Gaps Used as Roughness Elements
,”
Int. J. Ambient Energy
,
44
(
1
), pp.
413
423
.
46.
Maithani
,
R.
, and
Saini
,
J. S.
,
2017
, “
Heat Transfer and Fluid Flow Behaviour of a Rectangular Duct Roughened With V-Ribs With Symmetrical Gaps
,”
Int. J. Ambient Energy
,
38
(
4
), pp.
347
355
.
47.
Lau
,
S. C.
,
McMillin
,
R. D.
, and
Han
,
J. C.
,
1991
, “
Turbulent Heat Transfer and Friction in a Square Channel With Discrete Rib Turbulators
,”
ASME J. Turbomach.
,
113
(
3
), pp.
360
366
.
48.
Jain
,
S. K.
,
Agrawal
,
G. D.
, and
Misra
,
R.
,
2020
, “
Experimental Investigation of Thermo-Hydraulic Performance of Solar Air Heater Having Arc-Shaped Ribs With Multiple Gaps
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
1
), p.
011014
.
49.
Arunkumar
,
H. S.
,
Kumar
,
S.
, and
Vasudeva Karanth
,
K.
,
2022
, “
Performance Enhancement of a Solar Air Heater Using Rectangular Perforated Duct Inserts
,”
Therm. Sci. Eng. Prog.
,
34
, p.
101404
.
50.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD Investigation of Convection Heat Transfer in Solar Air Heater With Reverse L-Shaped Ribs
,”
Sol. Energy
,
131
, pp.
275
295
.
51.
Mund
,
C.
,
Rathore
,
S. K.
, and
Sahoo
,
R. K.
,
2023
, “
Experimental Analysis of Thermal Performance of SAH With Impinging Jet Having Varying Length of Perforated Jet Plate
,”
Int. Commun. Heat Mass Transf.
,
145
, p.
106809
.
52.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transf.
,
15
(
9
), pp.
1647
1658
.
53.
McAdams
,
W. H.
,
2010
,
Heat Transmission
,
McGraw-Hill
,
New York
.
54.
Kakac
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
,
1987
,
Handbook of Single-Phase Convective Heat Transfer, United States
,
John Wiley and Sons Inc.
,
New York
.
55.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.