Abstract

A novel combination of an earth air tunnel (EAT) and a sensible thermal storage-aided solar air heater has been proposed when the sensible storage medium is taken to be rocks filled within the air flow passage. Both time-dependent and steady-state models are reported. The former describes the exact thermal performance of the system for a two-month wintertime for the city of Baghdad, Iraq. The latter describes average performance of the system. The implicit finite difference method and method of separation of variables have been used to solve the pertinent equations in the respective models. Acceptable level of accuracy was obtained between the steady-state numerical and analytical solutions as well as between the numerical and the published data. It is revealed that preheating by a sufficiently long EAT module improves the effective power as well as the output temperature from the rock bed solar air heater by about 35% and 9% respectively for the present set of parameters considered. It is also observed that for the present set of parameters considered, the temperature gradients in the direction normal to air flow in the solar air heater are insignificant and may be ignored. A parametric study is also carried out that assesses the impact of system parameters on the quality as well as quantity of the energy extracted from the system. This work is hence the first to couple an EAT with a sensible thermal storage equipped solar air heater and may pave the way for future studies.

References

1.
Sharma
,
S.
,
Gohri
,
S.
,
Pandey
,
R.
,
Madan
,
J.
, and
Sharma
,
R.
,
2020
, “
Device Simulation of Poly (3-Hexylthiophene) HTL Based Single and Double Halide Perovskite Solar Cells
,”
Proceedings of the 47th IEEE Photovoltaic Specialists Conference (PVSC)
,
Calgary, Canada
,
June 15–Aug. 21
,
2327
2330
.
2.
Singh
,
D.
,
Singh
,
A.
, and
Thakur
,
A.
,
2022
, “
Solar Cogeneration in India: Current Situation and Future Prospects
,”
Proceedings of the Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)
,
Kannur, India
,
Aug. 11–12
,
1560
1565
.
3.
Gohri
,
S.
,
Sharma
,
S.
,
Pandey
,
R.
,
Madan
,
J.
, and
Sharma
,
R.
,
2020
, “
Influence of SnS and Sn2S3 Based BSF Layers on the Performance of CZTSSe Solar Cell
,”
Proceedings of the 47th IEEE Photovoltaic Specialists Conference (PVSC)
,
Calgary, Canada
,
June 15–Aug. 21
, pp.
2300
2303
.
4.
Rawat
,
S.
,
Kashyap
,
S.
,
Madan
,
J.
, and
Pandey
,
R.
,
2023
, “
Numerical Simulations of FASnI3 Based Solar Cell with the Variation of Absorber Layer Thickness
,”
Proceedings of the 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON)
,
Rajpura, India
,
Feb. 24–26
.
5.
Kumar
,
R.
, and
Kumar
,
A.
,
2017
, “
Experimental and Computational Fluid Dynamics Study on Fluid Flow and Heat Transfer in Triangular Passage Solar Air Heater of Different Configurations
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041013
.
6.
Jain
,
D.
,
2005
, “
Modeling the System Performance of Multi-Tray Crop Drying Using an Inclined Multi-Pass Solar Air Heater With In-Built Thermal Storage
,”
J. Food Eng.
,
71
(
1
), pp.
44
54
.
7.
Siddiqui
,
F. R.
,
Elminshawy
,
N. A.
, and
Addas
,
M. F.
,
2016
, “
Design and Performance Improvement of a Solar Desalination System by Using Solar Air Heater: Experimental and Theoretical Approach
,”
Desalination
,
399
, pp.
78
87
.
8.
Choudhury
,
P. K.
, and
Baruah
,
D. C.
,
2017
, “
Solar Air Heater for Residential Space Heating
,”
Energy, Ecol. Environ.
,
2
(
6
), pp.
387
403
.
9.
Sethi
,
C. K.
,
Acharya
,
S. K.
, and
Patnaik
,
P. P.
,
2023
, “
Investigation on Solar Drying Characteristics of Ginger (Zingiber officinale) in a Reflector Attached Solar Air Heater and Thermal Energy Storage System Using Nano Materials
,”
ASME J. Sol. Energy Eng.
,
145
(
6
), p.
061005
.
10.
Patil
,
A. K.
,
Saini
,
J. S.
, and
Kumar
,
K.
,
2015
, “
Experimental Investigation of Enhanced Heat Transfer and Pressure Drop in a Solar Air Heater Duct With Discretized Broken V-Rib Roughness
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021013
.
11.
Jain
,
S. K.
,
Misra
,
R.
, and
Agrawal
,
G. D.
,
2022
, “
Experimental Investigation and Optimizing the Parameters of a Solar Air Heater Having Broken Arc-Shaped Ribs Using Hybrid Entropy-VIKOR Technique
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061013
.
12.
Kumar
,
D.
, and
Layek
,
A.
,
2023
, “
Heat Transfer Augmentation of a Solar Air Heater Using a Twisted V-Shaped Staggered Rib Over the Absorber Plate
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021013
.
13.
Hegazy
,
M. M.
,
El-Sebaii
,
A.
,
Ramadan
,
M. R.
,
Aboul-Enein
,
S.
, and
Khallaf
,
A. E. M.
,
2020
, “
Comparative Study of Three Different Designs of a Hybrid PV/T Double-Pass Finned Plate Solar Air Heater
,”
Environ. Sci. Pollut. Res.
,
27
(
26
), pp.
32270
32282
.
14.
Zukowski
,
M.
, and
Woroniak
,
G.
,
2023
, “
Estimation of Energy Savings Resulting From the Cooperation of an Air to Water Heat Pump With a Solar Air Heater
,”
Sol. Energy
,
250
, pp.
182
193
.
15.
Elbrashy
,
A.
,
Aboutaleb
,
F.
,
El-Fakharany
,
M.
, and
Essa
,
F. A.
,
2023
, “
Experimental Study of Solar Air Heater Performance With Evacuated Tubes Connected in Series and Involving Nano-Copper Oxide/Paraffin Wax as Thermal Storage Enhancer
,”
Environ. Sci. Pollut. Res.
,
30
(
2
), pp.
4603
4616
.
16.
Garg
,
H. P.
,
Sharma
,
V. K.
,
Mahajan
,
R. B.
, and
Bhargave
,
A. K.
,
1985
, “
Experimental Study of an Inexpensive Solar Collector Cum Storage System for Agricultural Uses
,”
Sol. Energy
,
35
(
4
), pp.
321
331
.
17.
Hamdan
,
M. A.
,
1998
, “
Investigation of an Inexpensive Solar Collector Storage System
,”
Energy Convers. Manage.
,
39
(
5–6
), pp.
415
420
.
18.
Sharma
,
S. P.
,
Saini
,
J. S.
, and
Varma
,
H. K.
,
1991
, “
Thermal Performance of Packed-Bed Solar Air Heaters
,”
Sol. Energy
,
47
(
2
), pp.
59
67
.
19.
Chouksey
,
V. K.
, and
Sharma
,
S. P.
,
2016
, “
Investigations on Thermal Performance Characteristics of Wire Screen Packed Bed Solar Air Heater
,”
Sol. Energy
,
132
, pp.
591
605
.
20.
Chouksey
,
V. K.
,
Yadav
,
A. S.
,
Raha
,
S.
,
Shrivastava
,
V.
, and
Shrivas
,
S. P.
,
2022
, “
A Theoretical Parametric Analysis to Optimize the Bed Depth of Packed Bed Solar Air Collector
,”
Int. J. Green Energy
,
19
(
7
), pp.
775
785
.
21.
El-Sebaii
,
A. A.
,
Aboul-Enein
,
S.
,
Ramadan
,
M. R. I.
, and
El-Bialy
,
E.
,
2007
, “
Year Round Performance of Double Pass Solar Air Heater With Packed Bed
,”
Energy Convers. Manage.
,
48
(
3
), pp.
990
1003
.
22.
Moradi
,
R.
,
Kianifar
,
A.
, and
Wongwises
,
S.
,
2017
, “
Optimization of a Solar Air Heater With Phase Change Materials: Experimental and Numerical Study
,”
Exp. Therm. Fluid. Sci.
,
89
, pp.
41
49
.
23.
Saxena
,
A.
,
Srivastava
,
G.
, and
Tirth
,
V.
,
2015
, “
Design and Thermal Performance Evaluation of a Novel Solar Air Heater
,”
Renewable Energy
,
77
, pp.
501
511
.
24.
Salih
,
M. M. M.
,
Alomar
,
O. R.
, and
Yassien
,
H. N. S.
,
2021
, “
Impacts of Adding Porous Media on Performance of Double-Pass Solar Air Heater Under Natural and Forced Air Circulation Processes
,”
Int. J. Mech. Sci.
,
210
, p.
106738
.
25.
Saxena
,
A.
,
Cuce
,
E.
,
Singh
,
D. B.
,
Sethi
,
M.
,
Cuce
,
P. M.
,
Sagade
,
A. A.
, and
Kumar
,
A.
,
2023
, “
Experimental Studies of Latent Heat Storage Based Solar Air Heater for Space Heating: A Comparative Analysis
,”
J. Build. Eng.
,
69
, p.
106282
.
26.
Verma
,
S.
, and
Das
,
R.
,
2022
, “
Evaluation of the Effectiveness of Base Insulation on the Productivity of a Packed Bed Solar Air Heater
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
6
), p.
061015
.
27.
Algarni
,
S.
,
Tirth
,
V.
,
Saxena
,
A.
, and
Gupta
,
P.
,
2022
, “
A Comparative Study of Different Low-Cost Sensible Heat Storage Materials for Solar Air Heating: An Experimental Approach
,”
Energy Sources, Part A: Recovery, Util. Environ. Eff.
,
44
(
1
), pp.
912
933
.
28.
Jilani
,
N.
,
Yadav
,
S.
,
Panda
,
S. K.
,
Mohapatra
,
P.
, and
Tiwari
,
G. N.
,
2023
, “
Performance of Quonset Type Greenhouse Integrated With Thin Film Photovoltaic Thermal System Combined with Earth Air Heat Exchanger for Hot and Dry Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
145
(
6
), p.
064501
.
29.
Date
,
A.
,
Yaakob
,
Y.
,
Date
,
A.
,
Krishnapillai
,
S.
, and
Akbarzadeh
,
A.
,
2013
, “
Heat Extraction From Non-Convective and Lower Convective Zones of the Solar Pond: A Transient Study
,”
Sol. Energy
,
97
, pp.
517
528
.
30.
Verma
,
S.
, and
Das
,
R.
,
2019
, “
Concept of Triple Heat Exchanger-Assisted Solar Pond Through an Improved Analytical Model
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051003
.
31.
Qin
,
D.
,
Liu
,
J.
, and
Zhang
,
G.
,
2021
, “
A Novel Solar-Geothermal System Integrated With Earth–to–Air Heat Exchanger and Solar Air Heater with Phase Change Material—Numerical Modelling, Experimental Calibration and Parametrical Analysis
,”
J. Build. Eng.
,
35
, p.
101971
.
32.
Zhou
,
T.
,
Xiao
,
Y.
,
Liu
,
Y.
,
Lin
,
J.
, and
Huang
,
H.
,
2018
, “
Research on Cooling Performance of Phase Change Material-Filled Earth-Air Heat Exchanger
,”
Energy Convers. Manage.
,
177
, pp.
210
223
.
33.
Qin
,
D.
,
Liu
,
Z.
,
Zhou
,
Y.
,
Yan
,
Z.
,
Chen
,
D.
, and
Zhang
,
G.
,
2021
, “
Dynamic Performance of a Novel Air-Soil Heat Exchanger Coupling With Diversified Energy Storage Components—Modelling Development, Experimental Verification, Parametrical Design and Robust Operation
,”
Renewable Energy
,
167
, pp.
542
557
.
34.
Guo
,
X.
,
Wei
,
H.
,
He
,
X.
,
He
,
M.
, and
Yang
,
D.
,
2022
, “
Integrating Phase Change Material in Building Envelopes Combined With the Earth-to-Air Heat Exchanger for Indoor Thermal Environment Regulation
,”
Build. Environ.
,
221
, p.
109318
.
35.
Abbas
,
Q.
,
Khan
,
M. M.
,
Sabir
,
R.
,
Khan
,
Y. M.
, and
Koreshi
,
Z. U.
,
2010
, “
Numerical Simulation and Experimental Verification of Air Flow Through a Heated Pipe
,”
Int. J. Mech. Mechatron. Eng.
,
10
(
2
), pp.
7
12
. Paper Id: 106402-5858-IJMME-IJENS.
36.
Hänchen
,
M.
,
Brückner
,
S.
, and
Steinfeld
,
A.
,
2011
, “
High-Temperature Thermal Storage Using a Packed Bed of Rocks–Heat Transfer Analysis and Experimental Validation
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1798
1806
.
37.
Verma
,
S.
, and
Das
,
R.
,
2021
, “
Transient Study of a Solar Pond Under Heat Extraction From Non-Convective and Lower Convective Zones Considering Finite Effectiveness of Exchangers
,”
Sol. Energy
,
223
, pp.
437
448
.
38.
Dhiman
,
P.
,
Thakur
,
N. S.
,
Kumar
,
A.
, and
Singh
,
S.
,
2011
, “
An Analytical Model to Predict the Thermal Performance of a Novel Parallel Flow Packed Bed Solar Air Heater
,”
Appl. Energy
,
88
(
6
), pp.
2157
2167
.
39.
Yoo
,
H.
, and
Pak
,
E. T.
,
1993
, “
Theoretical Model of the Charging Process for Stratified Thermal Storage Tanks
,”
Sol. Energy
,
51
(
6
), pp.
513
519
.
40.
Chauhan
,
K. M.
,
Prajapati
,
J. G.
,
Goswami
,
N. Y.
,
Patel
,
S. N.
, and
Patel
,
K. N.
,
2018
, “
Design and Development of an Earth Air Tube Heat Exchanger
,”
Int. J. Manage. Technol. Eng.
,
8
(
6
), pp.
317
324
.
41.
Hrifech
,
S.
,
Agalit
,
H.
,
Jarni
,
A.
,
Mouguina
,
E. M.
,
Grosu
,
Y.
,
Faik
,
A.
, and
Mimet
,
A.
,
2020
, “
Characterization of Natural Rocks as Filler Materials for Medium-Temperature Packed Bed Thermal Energy Storage System
,”
J. Energy Storage
,
32
, p.
101822
.
You do not currently have access to this content.