Abstract

This paper presents a detailed analysis of the optical performance of circular trough concentrators with tubular receivers. First, a simple analytical formula for the achievable geometric concentration ratio as a function of the rim angle and acceptance angle is developed. Notably, the development reveals the existence of three distinct concentration ratio regimes: a first regime where the receiver is sized based on the reflection of the edge rays from the rim alone, a second regime where the receiver is sized based on the rim and the edge ray caustics, and a third regime where two reflections from the mirror are permitted. Several exemplary designs are proposed and further analyzed using Monte Carlo ray tracing to obtain transmission angle curves and receiver flux distributions. For an acceptance angle of 1 deg, the circular trough concentrator with circular receiver is found to achieve a maximum geometric concentration ratio of 7.695× with a peak flux of 30 suns. For large acceptance angles (10 deg), the circular trough achieves a geometric concentration ratio as high as 82% of that of a parabolic trough. This noteworthy performance, along with the fact that a circular mirror is amenable to an inflated polymer construction, makes this configuration promising for low-cost, low-concentration solar thermal applications.

References

1.
IEA
,
2021
, “
Statistics Report: Key World Energy Statistics 2021
,” https://www.iea.org/reports/key-world-energy-statistics-2021, Accessed March 22, 2023.
2.
IEA
,
2021
, “
Renewables 2021: Analysis and Forecast to 2026
,” https://www.iea.org/reports/renewables-2021, Accessed March 22, 2023.
3.
Braff
,
W. A.
,
Mueller
,
J. M.
, and
Trancik
,
J. E.
,
2016
, “
Value of Storage Technologies for Wind and Solar Energy
,”
Nat. Clim. Chang.
,
6
(
10
), pp.
964
969
.
4.
Weinstein
,
L. A.
,
Loomis
,
J.
,
Bhatia
,
B.
,
Bierman
,
D. M.
,
Wang
,
E. N.
, and
Chen
,
G.
,
2015
, “
Concentrating Solar Power
,”
Chem. Rev.
,
115
(
23
), pp.
12797
12838
.
5.
Hameer
,
S.
, and
van Niekerk
,
J. L.
,
2015
, “
A Review of Large-Scale Electrical Energy Storage
,”
Int. J. Energy Res.
,
39
(
9
), pp.
1179
1195
.
6.
IEA
, “
Heating
,” https://www.iea.org/fuels-and-technologies/heating, Accessed April 10, 2023.
7.
He
,
Y. L.
,
Qiu
,
Y.
,
Wang
,
K.
,
Yuan
,
F.
,
Wang
,
W. Q.
,
Li
,
M. J.
, and
Guo
,
J. Q.
,
2020
, “
Perspective of Concentrating Solar Power
,”
Energy
,
198
(
5
), p.
117373
.
8.
Bader
,
R.
,
Haueter
,
P.
,
Pedretti
,
A.
, and
Steinfeld
,
A.
,
2009
, “
Optical Design of a Novel Two-Stage Solar Trough Concentrator Based on Pneumatic Polymeric Structures
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031007
.
9.
Tagle-Salazar
,
P. D.
,
Nigam
,
K. D. P.
, and
Rivera-Solorio
,
C. I.
,
2020
, “
Parabolic Trough Solar Collectors: A General Overview of Technology, Industrial Applications, Energy Market, Modeling, and Standards
,”
Green Process. Synth.
,
9
(
1
), pp.
595
649
.
10.
Bader
,
R.
,
Pedretti
,
A.
, and
Steinfeld
,
A.
,
2011
, “
A 9-m-Aperture Solar Parabolic Trough Concentrator Based on a Multilayer Polymer Mirror Membrane Mounted on a Concrete Structure
,”
ASME J. Sol. Energy Eng
,
133
(
3
), p.
031016
.
11.
Good
,
P.
,
Ambrosetti
,
G.
,
Pedretti
,
A.
, and
Steinfeld
,
A.
,
2016
, “
A 1.2 MWth Solar Parabolic Trough System Based on Air as Heat Transfer Fluid at 500 DegC—Engineering Design, Modelling, Construction, and Testing
,”
Sol. Energy
,
139
, pp.
398
411
.
12.
Cooper
,
T.
,
Schmitz
,
M.
,
Good
,
P.
,
Ambrosetti
,
G.
,
Pedretti
,
A.
, and
Steinfeld
,
A.
,
2014
, “
Nonparabolic Solar Concentrators Matching the Parabola
,”
Opt. Lett.
,
39
(
15
), pp.
4301
4304
.
13.
Tabor
,
H.
, and
Zeimer
,
H.
,
1962
, “
Low-Cost Focussing Collector for Solar Power Units
,”
Sol. Energy
,
6
(
2
), pp.
55
59
.
14.
De Los Santos-García
,
F. M. I.
,
Nahmad-Molinari
,
Y.
,
Nieto-Navarro
,
J.
,
Alanís-Ruiz
,
C.
, and
Patiño-Jiménez
,
F.
,
2016
, “
Construction and Testing of Lightweight and Low-Cost Pneumatically Inflated Solar Concentrators
,”
Int. J. Photoenergy
,
2016
, pp.
1
8
.
15.
Kurup
,
P.
,
Akar
,
S.
,
Glynn
,
S.
,
Augustine
,
C.
, and
Davenport
,
P.
,
2022
,
Cost Update: Commercial and Advanced Heliostat Collectors
,” National Renewable Energy Laboratory NREL/TP-7A40-80482.
16.
Hofler
,
J.
,
2008
, “
Inflatable Solar Collector
,” Australian Patent AU 2008234452 B2.
17.
Stoeger
,
E.
, and
Munzenrieder
,
G.
,
2015
, “
Device for Concentrating Solar Radiation in an Absorber
,” US Patent 9033528 B2.
18.
Löf
,
G. O. G.
, and
Duffie
,
J. A.
,
1963
, “
Optimization of Focusing Solar-Collector Design
,”
ASME J. Eng. Power
,
85
(
3
), pp.
221
228
.
19.
Rabl
,
A.
,
1976
, “
Comparison of Solar Concentrators
,”
Sol. Energy
,
18
(
2
), pp.
93
111
.
20.
Bendt
,
P.
,
Rabl
,
A.
,
Gaul
,
H. W.
, and
Reed
,
K. A.
,
1979
, “Optical Analysis and Optimization of Line Focus Solar Collectors,”
Solar Energy Research Institute
,
Golden, CO
.
21.
Bendt
,
P.
, and
Rabl
,
A.
,
1981
, “
Optical Analysis of Point Focus Parabolic Radiation Concentrators
,”
Appl. Opt.
,
20
(
4
), pp.
674
683
.
22.
Pavlovic
,
S.
,
Bellos
,
E.
,
Stefanovic
,
V.
, and
Tzivanidis
,
C.
,
2017
, “
Optimum Geometry of Parabolic Trough Collectors With Optical and Thermal Criteria
,”
Int. Rev. Appl. Sci. Eng.
,
8
(
1
), pp.
45
50
.
23.
Yılmaz
,
İH
, and
Mwesigye
,
A.
,
2018
, “
Modeling, Simulation and Performance Analysis of Parabolic Trough Solar Collectors: A Comprehensive Review
,”
Appl. Energy
,
225
, pp.
135
174
.
24.
Kincaid
,
N.
,
Mungas
,
G.
,
Kramer
,
N.
,
Wagner
,
M.
, and
Zhu
,
G.
,
2018
, “
An Optical Performance Comparison of Three Concentrating Solar Power Collector Designs in Linear Fresnel, Parabolic Trough, and Central Receiver
,”
Appl. Energy
,
231
, pp.
1109
1121
.
25.
Manikandan
,
G. K.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2019
, “
Enhancing the Optical and Thermal Efficiency of a Parabolic Trough Collector—A Review
,”
Appl. Energy
,
235
, pp.
1524
1540
.
26.
Jebasingh
,
V. K.
, and
Herbert
,
G. M. J.
,
2016
, “
A Review of Solar Parabolic Trough Collector
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1085
1091
.
27.
Giostri
,
A.
,
Binotti
,
M.
,
Silva
,
P.
,
MacChi
,
E.
, and
Manzolini
,
G.
,
2013
, “
Comparison of Two Linear Collectors in Solar Thermal Plants: Parabolic Trough Versus Fresnel
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011001
.
28.
Zhu
,
G.
, and
Lewandowski
,
A.
,
2012
, “
A New Optical Evaluation Approach for Parabolic Trough Collectors: First-Principle Optical Intercept Calculation
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041005
.
29.
Lüpfert
,
E.
,
Pottler
,
K.
,
Ulmer
,
S.
,
Riffelmann
,
K. J.
,
Neumann
,
A.
, and
Schiricke
,
B.
,
2007
, “
Parabolic Trough Optical Performance Analysis Techniques
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
147
152
.
30.
Bennett
,
C. L.
,
2008
, “
Optimal Heat Collection Element Shapes for Parabolic Trough Concentrators
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), pp.
1
5
.
31.
Kumar
,
K. H.
,
Daabo
,
A. M.
,
Karmakar
,
M. K.
, and
Hirani
,
H.
,
2022
, “
Solar Parabolic Dish Collector for Concentrated Solar Thermal Systems: A Review and Recommendations
,”
Environ. Sci. Pollut. Res.
,
29
(
22
), pp.
32335
32367
.
32.
Pavlovic
,
S.
,
Daabo
,
A. M.
,
Bellos
,
E.
,
Stefanovic
,
V.
,
Mahmoud
,
S.
, and
Al-Dadah
,
R. K.
,
2017
, “
Experimental and Numerical Investigation on the Optical and Thermal Performance of Solar Parabolic Dish and Corrugated Spiral Cavity Receiver
,”
J. Clean Prod.
,
150
, pp.
75
92
.
33.
Hafez
,
A. Z.
,
Soliman
,
A.
,
El-Metwally
,
K. A.
, and
Ismail
,
I. M.
,
2016
, “
Solar Parabolic Dish Stirling Engine System Design, Simulation, and Thermal Analysis
,”
Energy Convers. Manag.
,
126
, pp.
60
75
.
34.
Zhu
,
G.
,
Wendelin
,
T.
,
Wagner
,
M. J.
, and
Kutscher
,
C.
,
2014
, “
History, Current State, and Future of Linear Fresnel Concentrating Solar Collectors
,”
Sol. Energy
,
103
, pp.
639
652
.
35.
Wagner
,
M. J.
, and
Wendelin
,
T.
,
2018
, “
SolarPILOT: A Power Tower Solar Field Layout and Characterization Tool
,”
Sol. Energy
,
171
, pp.
185
196
.
36.
Collado
,
F. J.
, and
Guallar
,
J.
,
2013
, “
A Review of Optimized Design Layouts for Solar Power Tower Plants With Campo Code
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
142
154
.
37.
Uzair
,
M.
, and
ur Rehman
,
N.
,
2021
, “
Intercept Factor for a Beam-Down Parabolic Trough Collector
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p. 061002.
38.
Bootello
,
J. P. N.
,
Price
,
H.
,
Silva-Pérez
,
M.
, and
Castellano
,
M. D.
,
2016
, “
Optical Analysis of a Two Stage XX Simultaneous Multiple Surface Concentrator for Parametric Trough Primary and Flat Absorber With Application in Direct Steam Generation Solar Thermal Plants
,”
ASME J. Sol. Energy Eng.
,
138
(
2
), p.
021002
.
39.
Rabl
,
A.
,
1985
,
Active Solar Collectors and Their Applications
,
Oxford University Press
,
New York
.
40.
Winston
,
R.
,
Minano
,
J. C.
,
Benitez
,
P. G.
,
Shatz
,
N.
, and
Bortz
,
J. C.
,
2005
,
Nonimaging Optics
,
Academic Press
,
Burlington, MA
.
41.
Schmitz
,
M.
,
Cooper
,
T.
,
Ambrosetti
,
G.
, and
Steinfeld
,
A.
,
2015
, “
Two-Stage Solar Concentrators Based on Parabolic Troughs: Asymmetric Versus Symmetric Designs
,”
Appl. Opt.
,
54
(
33
), p.
9709
.
42.
Timpano
,
M.
, and
Cooper
,
T. A.
,
2022
, “
Concentration Ratio for a Solar Trough Concentrator With Circular Mirror and Flat Receiver
,”
Sol. Energy
,
247
, pp.
196
201
.
43.
Cooper
,
T.
, and
Steinfeld
,
A.
,
2011
, “
Derivation of the Angular Dispersion Error Distribution of Mirror Surfaces for Monte Carlo Ray-Tracing Applications
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
044501
.
44.
Güven
,
H. M.
, and
Bannerot
,
R. B.
,
1986
, “
Derivation of Universal Error Parameters for Comprehensive Optical Analysis of Parabolic Troughs
,”
ASME J. Sol. Energy Eng.
,
108
(
4
), pp.
275
281
.
45.
Ries
,
H.
, and
Rabl
,
A.
,
1994
, “
Edge-Ray Principle of Nonimaging Optics
,”
J. Opt. Soc. Am. A
,
11
(
10
), p.
2627
.
46.
Chaves
,
J.
,
2016
,
Introduction to Nonimaging Optics
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
47.
Rincón
,
E. A.
, and
Osorio
,
F. A.
,
2002
, “
A New Troughlike Nonimaging Solar Concentrator
,”
ASME J. Sol. Energy Eng.
,
124
(
1
), pp.
51
54
.
48.
Tabor
,
H.
,
1958
, “
Stationary Mirror Systems for Solar Collectors
,”
Sol. Energy
,
2
(
3–4
), pp.
27
33
.
49.
Schubnell
,
M.
,
1992
, “
Sunshape and Its Influence on the Flux Distribution in Imaging Solar Concentrators
,”
ASME J. Sol. Energy Eng.
,
114
(
4
), pp.
260
266
.
50.
Wirz
,
M.
,
Roesle
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Three-Dimensional Optical and Thermal Numerical Model of Solar Tubular Receivers in Parabolic Trough Concentrators
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041012
.
51.
Gaul
,
H.
, and
Rabl
,
A.
,
1980
, “
Incidence-Angle Modifier and Average Optical Efficiency of Parabolic Trough Collectors
,”
ASME J. Sol. Energy Eng.
,
102
(
1
), pp.
16
21
.
52.
Buie
,
D.
,
Monger
,
A. G.
, and
Dey
,
C. J.
,
2003
, “
Sunshape Distributions for Terrestrial Solar Simulations
,”
Sol. Energy
,
74
(
2
), pp.
113
122
.
53.
Li
,
L.
,
Wang
,
B.
,
Bader
,
R.
,
Cooper
,
T.
, and
Lipiński
,
W.
,
2021
, “
Concentrating Collector Systems for Solar Thermal and Thermochemical Applications
,”
Adv. Chem. Eng., Solar Thermochem.
,
58
, pp.
1
53
.
You do not currently have access to this content.