Abstract

In this work, an innovative design for a solar water heating system using a flat-shaped heat pipe as a heat transfer device is presented to pave the way for a substantial increase in the thermal performance of these systems. An analytical study is utilized to investigate the thermal performance of the solar water heating system. The analytical results of the flat-shaped heat pipe system are compared with the results of the evacuated tube solar water heating system with a U-tube, thermosyphon, and closed-loop pulsating heat pipe. It is found that the water temperature difference between the inlet and outlet of the flat-shaped heat pipe system is substantially higher than the U-tube, thermosyphon, and closed-loop pulsating heat pipe system by as much as 31.4, 22.5, and 18.5 °C, respectively, at a nominal 0.6 l/min mass flowrate. Furthermore, utilizing the flat-shaped heat pipe in the solar water heating system optimizes the thermal conductivity of the solar setup due to a reduction in the condenser section length. These reductions also lead to a large reduction in the weight and cost of the system.

References

1.
Zhang
,
N.
,
Yin
,
S. Y.
, and
Vafai
,
K.
,
2021
, “
Transient Performance of a Solar Humidification-Dehumidification Desalination System Based on Hollow Fiber Membrane
,”
J. Comput. Des. Eng.
,
8
(
3
), pp.
923
934
.
2.
Wang
,
P.
,
Wei
,
R. K.
, and
Vafai
,
K.
,
2022
, “
A Dual-Scale Transport Model of the Porous Ceria Based on Solar Thermochemical Cycle Water Splitting Hydrogen Production
,”
Energy Convers. Manage.
,
272
, p.
116363
.
3.
Su
,
Z.
,
Gu
,
S.
, and
Vafai
,
K.
,
2017
, “
Modeling and Simulation of Ray Tracing for Compound Parabolic Thermal Solar Collector
,”
Int. Commun. Heat Mass Transfer
,
87
, pp.
169
174
.
4.
Zambolin
,
E.
, and
del Col
,
D.
,
2010
, “
Experimental Analysis of Thermal Performance of Flat Plate and Evacuated Tube Solar Collectors in Stationary Standard and Daily Conditions
,”
Sol. Energy
,
84
(
8
), pp.
1382
1396
.
5.
Tang
,
R.
, and
Yang
,
Y.
,
2014
, “
Nocturnal Reverse Flow in Water-in-Glass Evacuated Tube Solar Water Heaters
,”
Energy Convers. Manage.
,
80
, pp.
173
177
.
6.
Zhang
,
X.
,
You
,
S.
,
Xu
,
W.
,
Wang
,
M.
,
He
,
T.
, and
Zheng
,
X.
,
2014
, “
Experimental Investigation of the Higher Coefficient of Thermal Performance for Water-in-Glass Evacuated Tube Solar Water Heaters in China
,”
Energy Convers. Manage.
,
78
, pp.
386
392
.
7.
Gao
,
Y.
,
Zhang
,
Q.
,
Fan
,
R.
,
Lin
,
X.
, and
Yu
,
Y.
,
2013
, “
Effects of Thermal Mass and Flow Rate on Forced-Circulation Solar Hot-Water System: Comparison of Water-in-Glass and U-Pipe Evacuated-Tube Solar Collectors
,”
Sol. Energy Part C
,
98
, pp.
290
301
.
8.
Chow
,
T. T.
,
Dong
,
Z.
,
Chan
,
L. S.
,
Fong
,
K. F.
, and
Bai
,
Y.
,
2011
, “
Performance Evaluation of Evacuated Tube Solar Domestic Hot Water Systems in Hong Kong
,”
Energy Build.
,
43
(
12
), pp.
3467
3474
.
9.
Chow
,
T. T.
,
Bai
,
Y.
,
Dong
,
Z.
, and
Fong
,
K. F.
,
2013
, “
Selection Between Single-Phase and Two-Phase Evacuated-Tube Solar Water Heaters in Different Climate Zones of China
,”
Sol. Energy Part C
,
98
, pp.
265
274
.
10.
Al-Joboory
,
H. N. S.
,
2019
, “
Comparative Experimental Investigation of Two Evacuated Tube Solar Water Heaters of Different Configurations for Domestic Application of Baghdad-Iraq
,”
Energy Build.
,
203
, p.
109437
.
11.
Ma
,
L.
,
Lu
,
Z.
,
Zhang
,
J.
, and
Liang
,
R.
,
2010
, “
Thermal Performance Analysis of the Glass Evacuated Tube Solar Collector With U-Tube
,”
Build. Environ.
,
45
(
9
), pp.
1959
1967
.
12.
Naik
,
B. K.
,
Bhowmik
,
M.
, and
Muthukumar
,
P.
,
2019
, “
Experimental Investigation and Numerical Modelling on the Performance Assessments of Evacuated U-Tube Solar Collector Systems
,”
Renew. Energy
,
134
, pp.
1344
1361
.
13.
Liang
,
R.
,
Ma
,
L.
,
Zhang
,
J.
, and
Zhao
,
D.
,
2011
, “
Theoretical and Experimental Investigation of the Filled-Type Evacuated Tube Solar Collector With U Tube
,”
Sol. Energy
,
85
(
9
), pp.
1735
1744
.
14.
Azad
,
E.
,
2008
, “
Theoretical and Experimental Investigation of Heat Pipe Solar Collector
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1666
1672
.
15.
Daghigh
,
R.
, and
Shafieian
,
A.
,
2016
, “
Theoretical and Experimental Analysis of Thermal Performance of a Solar Water Heating System With Evacuated Tube Heat Pipe Collector
,”
Appl. Therm. Eng.
,
103
, pp.
1219
1227
.
16.
Wannagosit
,
C.
,
Sakulchangsatjatai
,
P.
,
Kammuang-Lue
,
N.
, and
Terdtoon
,
P.
,
2018
, “
Validated Mathematical Models of a Solar Water Heater System With Thermosyphon Evacuated Tube Collectors
,”
Case Stud. Therm. Eng.
,
12
, pp.
528
536
.
17.
Siritan
,
M.
,
Kammuang-Lue
,
N.
,
Terdtoon
,
P.
, and
Sakulchangsatjatai
,
P.
,
2022
, “
Thermal Performance and Thermo-Economics Analysis of Evacuated Glass Tube Solar Water Heater With Closed-Loop Pulsating Heat Pipe
,”
Case Stud. Therm. Eng.
,
35
, p.
102139
.
18.
Khanafer
,
K.
, and
Vafai
,
K.
,
2018
, “
A Review on the Applications of Nanofluids in Solar Energy Field
,”
Renew. Energy
,
123
, pp.
398
406
.
19.
Khanafer
,
K.
, and
Vafai
,
K.
,
2013
, “
Applications of Nanomaterials in Solar Energy and Desalination Sectors
,”
Adv. Heat Transfer
,
45
, pp.
303
329
.
20.
Ghaderian
,
J.
,
Sidik
,
N. A. C.
,
Kasaeian
,
A.
,
Ghaderian
,
S.
,
Okhovat
,
A.
,
Pakzadeh
,
A.
,
Samion
,
S.
, and
Yahya
,
W. J.
,
2017
, “
Performance of Copper Oxide/Distilled Water Nanofluid in Evacuated Tube Solar Collector (ETSC) Water Heater With Internal Coil Under Thermosyphon System Circulations
,”
Appl. Therm. Eng.
,
121
, pp.
520
536
.
21.
Kumar
,
A.
,
Tiwari
,
A. K.
, and
Said
,
Z.
,
2021
, “
A Comprehensive Review Analysis on Advances of Evacuated Tube Solar Collector Using Nanofluids and PCM
,”
Sust. Energy Technol. Assess.
,
47
, p.
101417
.
22.
Salameh
,
T.
,
Zurigat
,
Y.
,
Badran
,
A.
,
Ghenai
,
C.
,
El Haj Assad
,
M.
,
Khanafer
,
K.
, and
Vafai
,
K.
,
2019
, “
Numerical Investigation of Two-Phase Flow Over Unglazed Plate Collector Covered With Porous Material of Wire Screen for Solar Water Heater Application
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031009
.
23.
Wang
,
P.
, and
Vafai
,
K.
,
2017
, “
Modeling and Analysis of an Efficient Porous Media for a Solar Porous Absorber With a Variable Pore Structure
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051005
.
24.
Wang
,
P.
,
Li
,
J. B.
,
Vafai
,
K.
,
Zhao
,
L.
, and
Zhou
,
L.
,
2017
, “
Thermo-Fluid Optimization of a Solar Porous Absorber With a Variable Pore Structure
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051012
.
25.
Shoeibi
,
S.
,
Saemian
,
M.
,
Kargarsharifabad
,
H.
,
Hosseinzade
,
S.
,
Rahbar
,
N.
,
Khiadani
,
M.
, and
Rashidi
,
M. M.
,
2022
, “
A Review on Evaporation Improvement of Solar Still Desalination Using Porous Material
,”
Int. Commun. Heat Mass Transfer
,
138
, p.
106387
.
26.
Vafai
,
K.
, and
Wang
,
W.
,
1992
, “
Analysis of Flow and Heat Transfer Characteristics of an Asymmetrical Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
,
35
(
9
), pp.
2087
2099
.
27.
Vafai
,
K.
,
Zhu
,
N.
, and
Wang
,
W.
,
1995
, “
Analysis of Asymmetric Disk-Shaped and Flat-Plate Heat Pipes
,”
ASME J. Heat Transfer
,
117
(
1
), pp.
209
218
.
28.
Zhu
,
N.
, and
Vafai
,
K.
,
1998
, “
Vapor and Liquid Flow in an Asymmetrical Flat Plate Heat Pipe: A Three-Dimensional Analytical and Numerical Investigation
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
159
174
.
29.
Wang
,
Y.
, and
Vafai
,
K.
,
2000
, “
An Experimental Investigation of the Thermal Performance of an Asymmetrical Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
,
43
(
15
), pp.
2657
2668
.
30.
Wang
,
Y.
, and
Vafai
,
K.
,
2000
, “
An Experimental Investigation of the Transient Characteristics on a Flat-Plate Heat Pipe During Startup and Shutdown Operations
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
525
535
.
31.
Lu
,
S.
, and
Vafai
,
K.
,
2022
, “
Optimization of the Thermal Performance of Three-Dimensional Integrated Circuits (3D ICs) Utilizing Rectangular-Shaped and Disk-Shaped Heat Pipes
,”
ASME J. Heat Transfer
,
144
(
6
), p.
061901
.
32.
Cengel
,
Y. A.
,
2004
,
Heat Transfer a Practical Approach
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.