Abstract

A solar-assisted heat pump (HP) dryer is fabricated for intermittent drying. The experiment is performed for different intermittency ratios for radish drying using future refrigerant, R1234yf. The effect of total drying time (on-period + off-period) on various energetic, exergetic, and economic performances is investigated. Radish chips were dried to extract moisture from 92.4% to 11.9%. Energy efficiency and drying efficiency (DE) are estimated higher for a lower intermittency ratio. The moisture extraction rate (MER) and the specific moisture extraction rate (SMER) are higher for intermittent drying as compared with continuous drying and increase with a decrease in intermittency ratio. The economic analysis concludes that the payback period is lower for a lower intermittency ratio. The payback period for intermittency ratio of 1, 0.66, 0.33, and 0.2 are estimated as 1.617 years, 1.459 years, 1.384 years, and 1.347 years, respectively. Present experimental thermoeconomic analysis reveals that intermittent drying is much better (maximum enhancement of specific moisture extraction rate is 60.6%, that of energy efficiency is 56.4% and maximum reduction of drying cost is 37.9% with studied conditions) than continuous drying.

References

1.
Singh
,
A.
,
Sarkar
,
J.
, and
Sahoo
,
R. R.
,
2019
, “
Comparative Analyses on a Batch-Type Heat Pump Dryer Using Low GWP Refrigerants
,”
Food Bioprod. Process.
,
117
(
5
), pp.
1
13
.
2.
El-Sebaii
,
A. A.
, and
Shalaby
,
S. M.
,
2017
, “
Experimental Investigation of Drying Thymus Cut Leaves in Indirect Solar Dryer With Phase Change Material
,”
ASME J. Solar Energy Eng.
,
139
(
6
), p.
061011
.
3.
Sandali
,
M.
,
Boubekri
,
A.
, and
Mennouche
,
D.
,
2019
, “
Improvement of the Thermal Performance of Solar Drying Systems Using Different Techniques: A Review
,”
ASME J. Solar Energy Eng.
,
141
(
5
), p.
050802
.
4.
Saxena
,
G.
, and
Gaur
,
M. K.
,
2019
, “
Performance Evaluation and Drying Kinetics for Solar Drying of Hygroscopic Crops in Vacuum Tube Assisted Hybrid Dryer
,”
ASME J. Solar Energy Eng.
,
142
(
5
), p.
051009
.
5.
Fantasse
,
A.
,
Lakhal
,
E. K.
,
Idlimam
,
A.
, and
Berroug
,
F.
,
2021
, “
Energy Efficiency of Drying Kinetics Process of Hydroxide Sludge Wastes in an Indirect Convection Solar Dryer
,”
ASME J. Solar Energy Eng.
,
143
(
4
), p.
041007
.
6.
Khanlari
,
A.
,
Sözen
,
A.
,
Şirin
,
C.
,
Tuncer
,
A. D.
, and
Gungor
,
A.
,
2020
, “
Performance Enhancement of a Greenhouse Dryer: Analysis of a Cost-Effective Alternative Solar Air Heater
,”
J. Cleaner Prod.
,
251
(
19
), p.
119672
.
7.
Herritsch
,
A.
,
Dronfield
,
J.
, and
Nijdam
,
J. J.
,
2010
, “
Intermittent and Continuous Drying of Red Beech Timber From the Green Condition
,”
Drying Technol.
,
28
(
2
), pp.
269
277
.
8.
Chong
,
C. H.
,
Figiel
,
A.
,
Law
,
C. L.
, and
Wojdyło
,
A.
,
2014
, “
Combined Drying of Apple Cubes by Using of Heat Pump, Vacuum-Microwave, and Intermittent Techniques
,”
Food Bioprocess Technol.
,
7
(
4
), pp.
975
989
.
9.
Chin
,
S. K.
, and
Law
,
C. L.
,
2010
, “
Product Quality and Drying Characteristics of Intermittent Heat Pump Drying of Ganoderma tsugae Murrill
,”
Drying Technol.
,
28
(
12
), pp.
1457
1465
.
10.
Ong
,
S. P.
,
Law
,
C. L.
, and
Hii
,
C. L.
,
2012
, “
Optimization of Heat Pump-Assisted Intermittent Drying
,”
Drying Technol.
,
30
(
15
), pp.
1676
1687
.
11.
Yang
,
Z.
,
Zhu
,
E.
,
Zhu
,
Z.
,
Wang
,
J.
, and
Li
,
S.
,
2013
, “
A Comparative Study on Intermittent Heat Pump Drying Process of Chinese Cabbage (Brassica campestris L. ssp) Seeds
,”
Food Bioprod. Process.
,
91
(
4
), pp.
381
388
.
12.
Zhu
,
Z.
,
Yang
,
Z.
, and
Wang
,
F.
,
2016
, “
Experimental Research on Intermittent Heat Pump Drying With Constant and Time-Variant Intermittency Ratio
,”
Drying Technol.
,
34
(
13
), pp.
1630
1640
.
13.
Zhao
,
H.
,
Yang
,
Z.
, and
Tao
,
Z.
,
2017
, “
Drying Kinetics of Continuous and Intermittent Heat Pump Drying of Green Soybean Seeds
,”
Int. J. Food Eng.
,
13
(
11
), p.
20170182
.
14.
Gan
,
S. H.
,
Ong
,
S. P.
,
Chin
,
N. L.
, and
Law
,
C. L.
,
2017
, “
A Comparative Quality Study and Energy Saving on Intermittent Heat Pump Drying of Malaysian Edible Bird’s Nest
,”
Drying Technol.
,
35
(
1
), pp.
4
14
.
15.
Yang
,
Z.
,
Yang
,
Z.
,
Yu
,
F.
, and
Tao
,
Z.
,
2020
, “
Ultrasound-Assisted Heat Pump Intermittent Drying of Adzuki Bean Seeds: Drying Characteristics and Parameter Optimization
,”
J. Food Process Eng.
,
43
(
10
), p.
e13501
.
16.
Singh
,
A.
,
Sarkar
,
J.
, and
Sahoo
,
R. R.
,
2020
, “
Experimental Performance Analysis of Novel Indirect-Expansion Solar-Infrared Assisted Heat Pump Dryer for Agricultural Products
,”
Sol. Energy
,
206
(
12
), pp.
907
917
.
17.
Singh
,
A.
,
Sarkar
,
J.
, and
Sahoo
,
R. R.
,
2020
, “
Experimental Energy, Exergy, Economic and Exergoeconomic Analyses of Batch-Type Solar-Assisted Heat Pump Dryer
,”
Renew. Energy
,
156
(
12
), pp.
1107
1116
.
18.
Vieira
,
M. G. A.
,
Estrella
,
L.
, and
Rocha
,
S. C. S.
,
2007
, “
Energy Efficiency and Drying Kinetics of Recycled Paper Pulp
,”
Drying Technol.
,
25
(
10
), pp.
1639
1648
.
19.
Atalay
,
H.
,
2019
, “
Comparative Assessment of Solar and Heat Pump Dryers With Regards to Exergy and Exergoeconomic Performance
,”
Energy
,
189
(
24
), pp.
116180
.
20.
Yahya
,
M.
,
Fahmi
,
H.
,
Fudholi
,
A.
, and
Sopian
,
K.
,
2018
, “
Performance and Economic Analyses on Solar-Assisted Heat Pump Fluidised bed Dryer Integrated With Biomass Furnace for Rice Drying
,”
Sol. Energy
,
174
(
16
), pp.
1058
1067
.
21.
Holman
,
J. P.
,
2001
,
Experimental Methods for Engineers
,
McGraw-Hill
,
New York
.
22.
Singh
,
A.
,
Sarkar
,
J.
, and
Sahoo
,
R. R.
,
2020
, “
Experiment on Waste Heat Recovery-Assisted Heat Pump Drying of Food Chips: Performance, Economic, and Exergoeconomic Analyses
,”
J. Food Process Pres.
,
44
(
9
), p.
e14699
.
23.
Aktaş
,
M.
,
Khanlari
,
A.
,
Amini
,
A.
, and
Şevik
,
S.
,
2017
, “
Performance Analysis of Heat Pump and Infrared–Heat Pump Drying of Grated Carrot Using Energy-Exergy Methodology
,”
Energy Conversion Manage.
,
132
(
2
), pp.
327
338
.
24.
Qiu
,
Y.
,
Li
,
M.
,
Hassanien
,
R. H. E.
,
Wang
,
Y.
,
Luo
,
X.
, and
Yu
,
Q.
,
2016
, “
Performance and Operation Mode Analysis of a Heat Recovery and Thermal Storage Solar-Assisted Heat Pump Drying System
,”
Sol. Energy
,
137
(
15
), pp.
225
235
.
You do not currently have access to this content.