Abstract

Concentrating solar power (CSP) technology is one of the promising options to generate green energy. However, the cost of kWhe produced is relatively high compared with fossil resources and can be reduced by integrating a cogeneration system exploiting waste energy. In this study, a technico-economic evaluation of a 1 MWe CSP plant with a condensation heat (85 °C) is investigated. The temperature constraint is set to meet the thermal separation needs of the draw solution of a forward osmosis desalination process. The purpose of this study focuses on the factors involved in reducing the cost per kWhe, which are the selection of the organic fluid used in the organic Rankine cycle and the appropriate choice of the solar multiple (SM) according to the appropriate storage hours (SH) maximizing the CSP thermal efficiency. The performance of different organic fluids was compared, based on the calculation of the thermodynamic cycle efficiency. The cyclopentane was retained for its reduced cost. Operating with this fluid, a sensitivity analysis was realized to test the effect of the solar multiple and storage hours on the power plant. It allows us to conclude that different appropriate combination between storage hours and solar multiple can be chosen, for the needs of our project, we opt for 8 h and 1.85, respectively. Thus, in this case, the cost of kWh was found to be 23.95¢.

References

1.
Aramesh
,
M.
,
Kasaeian
,
A.
,
Pourfayaz
,
F.
, and
Wen
,
D.
,
2017
, “
Energy Analysis and Shadow Modeling of a Rectangular Type Salt Gradient Solar Pond
,”
Sol. Energy
,
146
, pp.
161
171
. 10.1016/j.solener.2017.02.026
2.
Aramesh
,
M.
,
Pourfayaz
,
F.
, and
Kasaeian
,
A.
,
2017
, “
Numerical Investigation of the Nanofluid Effects on the Heat Extraction Process of Solar Ponds in the Transient Step
,”
Sol. Energy
,
157
, pp.
869
879
. 10.1016/j.solener.2017.09.011
3.
Kasaeian
,
A.
,
Tabasi
,
S.
,
Ghaderian
,
J.
, and
Yousefi
,
H.
,
2018
, “
A Review on Parabolic Trough/Fresnel Based Photovoltaic Thermal Systems
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
193
204
. 10.1016/j.rser.2018.03.114
4.
Morin
,
G.
,
Dersch
,
J.
,
Platzer
,
W.
,
Eck
,
M.
, and
Häberle
,
A.
,
2012
, “
Comparison of Linear Fresnel and Parabolic Trough Collector Power Plants
,”
Sol. Energy
,
86
(
1
), pp.
1
12
. 10.1016/j.solener.2011.06.020
5.
Pavlović
,
T. M.
,
Radonjić
,
I. S.
,
Milosavljević
,
D. D.
, and
Pantić
,
L. S.
,
2012
, “
A Review of Concentrating Solar Power Plants in the World and Their Potential Use in Serbia
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
3891
3902
. 10.1016/j.rser.2012.03.042
6.
Abbas
,
R.
, and
Martínez-Val
,
J. M.
,
2015
, “
Analytic Optical Design of Linear Fresnel Collectors With Variable Widths and Shifts of Mirrors
,”
Renewable Energy
,
75
, pp.
81
92
. 10.1016/j.renene.2014.09.029
7.
Desai
,
N. B.
, and
Bandyopadhyay
,
S.
,
2016
, “
Thermo-economic Analysis and Selection of Working Fluid for Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
95
, pp.
471
481
. 10.1016/j.applthermaleng.2015.11.018
8.
Garg
,
P.
,
Orosz
,
M. S.
, and
Kumar
,
P.
,
2016
, “
Thermo-economic Evaluation of ORCs for Various Working Fluids
,”
Appl. Therm. Eng.
,
109
, pp.
841
853
. 10.1016/j.applthermaleng.2016.06.083
9.
Tchanche
,
B. F.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2468
2476
. 10.1016/j.applthermaleng.2008.12.025
10.
Xie
,
W. T.
,
Dai
,
Y. J.
,
Wang
,
R. Z.
, and
Sumathy
,
K.
,
2011
, “
Concentrated Solar Energy Applications Using Fresnel Lenses: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
2588
2606
. 10.1016/j.rser.2011.03.031
11.
Lai
,
N. A.
,
Wendland
,
M.
, and
Fischer
,
J.
,
2011
, “
Working Fluids for High-Temperature Organic Rankine Cycles
,”
Energy
,
36
(
1
), pp.
199
211
. 10.1016/j.energy.2010.10.051
12.
Thurairaja
,
K.
,
Wijewardane
,
A.
,
Jayasekara
,
S.
, and
Ranasinghe
,
C.
,
2019
, “
Working Fluid Selection and Performance Evaluation of ORC
,”
Energy Proc.
,
156
, pp.
244
248
. 10.1016/j.egypro.2018.11.136
13.
He
,
Y. L.
,
Mei
,
D. H.
,
Tao
,
W. Q.
,
Yang
,
W. W.
, and
Liu
,
H. L.
,
2012
, “
Simulation of the Parabolic Trough Solar Energy Generation System With Organic Rankine Cycle
,”
Appl. Energy
,
97
, pp.
630
641
. 10.1016/j.apenergy.2012.02.047
14.
Xu
,
G.
,
Song
,
G.
,
Zhu
,
X.
,
Gao
,
W.
,
Li
,
H.
, and
Quan
,
Y.
,
2015
, “
Performance Evaluation of a Direct Vapor Generation Supercritical ORC System Driven by Linear Fresnel Reflector Solar Concentrator
,”
Appl. Therm. Eng.
,
80
, pp.
196
204
. 10.1016/j.applthermaleng.2014.12.071
15.
Peng
,
D.-Y.
, and
Robinson
,
D. B.
,
1972
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
. 10.1021/i160057a011
16.
Reid
,
R. R.
,
Prausnitz
,
P. J.
, and
Poling
,
P. B.
,
1987
,
The Properties of Gases and Liquids
, Vol.
4
,
McGraw-Hill
,
New York
, p.
131
.
17.
Abderafi
,
S.
, and
Bounahmidi
,
T.
,
1994
, “
Measurement and Modeling of Atmospheric Pressure Vapor-Liquid Equilibrium Data for Binary, Ternary and Quaternary Mixtures of Sucrose, Glucose, Fructose and Water Components
,”
Fluid Phase Equilib.
,
93
, pp.
337
351
. 10.1016/0378-3812(94)87017-9
18.
Abderafi
,
S.
, and
Bounahmidi
,
T.
,
1999
, “
Measurement and Estimation of Vapor-Liquid Equilibrium for Industrial Sugar Juice Using the Peng-Robinson Equation of State
,”
Fluid Phase Equilib.
,
162
(
1–2
), pp.
225
240
. 10.1016/S0378-3812(99)00184-3
19.
Nasrifar
,
K.
,
2010
, “
Comparative Study of Eleven Equations of State in Predicting the Thermodynamic Properties of Hydrogen
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3802
3811
. 10.1016/j.ijhydene.2010.01.032
20.
Brown
,
J. S.
,
2007
, “
Predicting Performance of Refrigerants Using the Peng-Robinson Equation of State
,”
Int. J. Refrig.
,
30
(
8
), pp.
1319
1328
. 10.1016/j.ijrefrig.2007.04.006
21.
Brown
,
J. S.
,
Zilio
,
C.
, and
Cavallini
,
A.
,
2010
, “
Thermodynamic Properties of Eight Fluorinated Olefins
,”
Int. J. Refrig.
,
33
(
2
), pp.
235
241
. 10.1016/j.ijrefrig.2009.04.005
22.
Blair
,
N.
,
Dobos
,
A. P.
,
Freeman
,
J.
,
Neises
,
T.
,
Wagner
,
M.
,
Ferguson
,
T.
,
Gilman
,
P.
, and
Janzou
,
S.
,
2014
, “
System Advisor Model, SAM 2014.1.14: General Description 2014
,”
Natl. Renew Energy Lab
. 10.2172/1126294
23.
Wagner
,
M. J.
, and
Gilman
,
P.
,
2011
, “
Technical Manual for the SAM Physical Trough Model, by National Renewable Energy Laboratory (NREL, U.S. Department of Energy)
,”
Natl. Renewable Energy Lab.
,
303
, pp.
275
3000
.
24.
Ezeanya
,
E. K.
,
Massiha
,
G. H.
,
Simon
,
W. E.
,
Raush
,
J. R.
, and
Chambers
,
T. L.
,
2018
, “
System Advisor Model (SAM) Simulation Modelling of a Concentrating Solar Thermal Power Plant With Comparison to Actual Performance Data
,”
Cogent Eng.
,
5
(
1
), pp.
1
26
. 10.1080/23311916.2018.1524051
25.
Fares
,
M. B.
, and
Abderafi
,
S.
,
2018
, “
Water Consumption Analysis of Moroccan Concentrating Solar Power Station
,”
Sol. Energy
,
172
, pp.
146
151
. 10.1016/j.solener.2018.06.003
26.
Desai
,
N. B.
, and
Bandyopadhyay
,
S.
,
2016
, “
Thermo-economic Comparisons Between Solar Steam Rankine and Organic Rankine Cycles
,”
Appl. Therm. Eng.
,
105
, pp.
862
875
. 10.1016/j.applthermaleng.2016.04.055
27.
Astolfi
,
M.
,
Romano
,
M. C.
,
Bombarda
,
P.
, and
Macchi
,
E.
,
2014
, “
Binary ORC (Organic Rankine Cycles) Power Plants for the Exploitation of Medium-Low Temperature Geothermal Sources—Part B: Techno-Economic Optimization
,”
Energy
,
66
, pp.
435
446
. 10.1016/j.energy.2013.11.057
28.
Kashiwagi
,
H.
,
Hashimoto
,
T.
,
Tanaka
,
Y.
,
Kubota
,
H.
, and
Makita
,
T.
,
1982
, “
Thermal Conductivity and Density of Toluene in the Temperature Range 273–373 K at Pressures up to 250 MPa
,”
Int. J. Thermophys.
,
3
(
3
), pp.
201
215
. 10.1007/BF00503316
29.
Pereiro
,
A. B.
,
Rodrı
,
A.
,
Canosa
,
J.
, and
Tojo
,
J.
,
2004
, “
Density, Viscosity, and Speed of Sound of Dialkyl Carbonates With Cyclopentane and Methyl Cyclohexane at Several Temperatures
,”
J. Chem. Eng. Data
, pp.
1392
1399
.
30.
Yang
,
C.
,
Ma
,
P.
, and
Zhou
,
Q.
,
2004
, “
Excess Molar Volumes and Viscosities of Binary Mixtures of Sulfolane With Benzene, Toluene, Ethylbenzene, p-Xylene, o-Xylene, and m-Xylene at 303.15 and 323.15 K and Atmospheric Pressure
,”
J. Chem. Eng. Data
,
49
(
4
), pp.
881
885
. 10.1021/je0341920
31.
Colonna
,
P.
,
Nannan
,
N. R.
,
Guardone
,
A.
, and
Lemmon
,
E. W.
,
2006
, “
Multiparameter Equations of State for Selected Siloxanes
,”
Fluid Phase Equilib.
,
244
(
2
), pp.
193
211
. 10.1016/j.fluid.2006.04.015
32.
Natarajan
,
G.
, and
Viswanath
,
D. S.
,
1985
, “
Enthalpy of Vaporization and Vapor Pressure of Benzene, Toluene, p-Xylene, and Tetralin Between 1 and 16 bar
,”
J. Chem. Eng. Data
,
30
(
2
), pp.
137
140
. 10.1021/je00040a001
34.
Turchi
,
C.
,
Mehos
,
M.
,
Ho
,
C. K.
, and
Kolb
,
G. J.
,
2010
, “
Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market
,”
Natl. Renewable Energy Lab
,
11
, p.
3
.
35.
Shu
,
G.
,
Li
,
X.
,
Tian
,
H.
,
Liang
,
X.
,
Wei
,
H.
, and
Wang
,
X.
,
2014
, “
Alkanes as Working Fluids for High-Temperature Exhaust Heat Recovery of Diesel Engine Using Organic Rankine Cycle
,”
Appl. Energy
,
119
, pp.
204
217
. 10.1016/j.apenergy.2013.12.056
36.
Angelino
,
G.
, and
Invernizzi
,
C.
,
2008
, “
Cyclic Methylsiloxanes as Working Fluids for Space Power Cycles
,”
ASME J. Sol. Energy Eng.
,
115
(
3
), pp.
130
137
. 10.1115/1.2930039
37.
Deshpande
,
G.
, and
Rezac
,
M. E.
,
2002
, “
Kinetic Aspects of the Thermal Degradation of Poly(Dimethyl Siloxane) and Poly(Dimethyl Diphenyl Siloxane)
,”
Polym. Degrad. Stab.
,
76
(
1
), pp.
17
24
. 10.1016/S0141-3910(01)00261-0
You do not currently have access to this content.