Abstract

Microgrids play a critical role in the transition from conventional centralized power systems to the smart distributed networks of the future. To achieve the greatest outputs from microgrids, a comprehensive multi-objective optimization plan is necessary. Among various conflicting planning objectives, emissions and cost are primary concerns in microgrid optimization. In this work, two novel procedures, i.e., non-dominated sorting genetic algorithm-II (NSGA-II) and multi-objective particle swarm optimization (MOPSO), were developed to minimize emissions and cost in combined heat- and power-based (CHP) industrial microgrids (IMGs) simultaneously, by applying the most practical constraints and considering the variable loads. Two different scenarios, the presence and absence of photovoltaics (PV) and PV storage systems, were analyzed. The results concluded that when considering PVs and PV storage systems, the NSGA-II algorithm provides the most optimized solution in minimizing economic and environmental objectives.

References

1.
Keles
,
C.
,
Alagoz
,
B. B.
, and
Kaygusuz
,
A.
,
2017
, “
Multi-Source Energy Mixing for Renewable Energy Microgrids by Particle Swarm Optimization
,”
2017 International Artificial Intelligence and Data Processing Symposium (IDAP)
,
IEEE
, pp.
1
5
.
2.
Abu-Elzait
,
S.
, and
Parkin
,
R.
,
2019
, “
Economic and Environmental Advantages of Renewable-Based Microgrids Over Conventional Microgrids
,”
2019 IEEE Green Technologies Conference (GreenTech)
,
IEEE
, pp.
1
4
.
3.
Anap
,
P. R.
, and
Date
,
T. N.
,
2018
, “
Energy Management in Microgrid by Using Classical Method and Particle Swarm Optimization Method
,”
2018 International Conference On Advances in Communication and Computing Technology (ICACCT)
,
IEEE
, pp.
528
533
.
4.
Chen
,
M.
, and
Jun
,
Z.
,
2018
, “
Research on Layered Microgrid Operation Optimization Based on NSGA-II Algorithm
,”
2018 International Conference on Power System Technology (POWERCON)
,
IEEE
, pp.
2149
2156
.
5.
Twaha
,
S.
, and
Ramli
,
M. A.
,
2018
, “
A Review of Optimization Approaches for Hybrid Distributed Energy Generation Systems: Off-Grid and Grid-Connected Systems
,”
Sustainable Cities Soc.
,
41
, pp.
320
331
. 10.1016/j.scs.2018.05.027
6.
Mugunthan
,
P.
,
Shoemaker
,
C. A.
, and
Regis
,
R. G.
,
2005
, “
Comparison of Function Approximation, Heuristic, and Derivative-Based Methods for Automatic Calibration of Computationally Expensive Groundwater Bioremediation Models
,”
Water Resour. Res.
,
41
(
11
). 10.1029/2005WR004134
7.
Coello
,
C. A. C.
, and
Zacatenco
,
C. S. P.
,
2007
, “
Metaheuristics for Multiobjective Optimization
,”
Tutorial on IEEE Symposium Series on Computational Intelligence
.
8.
Vera
,
G.
,
Yimy
,
E.
,
Dufo-López
,
R.
, and
Bernal-Agustín
,
J. L.
,
2019
, “
Energy Management in Microgrids With Renewable Energy Sources: A Literature Review
,”
Appl. Sci.
,
9
(
18
), p.
3854
. 10.3390/app9183854
9.
Al-Saedi
,
W.
,
Lachowicz
,
S. W.
,
Habibi
,
D.
, and
Bass
,
O.
,
2013
, “
Power Flow Control in Grid-Connected Microgrid Operation Using Particle Swarm Optimization Under Variable Load Conditions
,”
Int. J. Electr. Power Energy Syst.
,
49
, pp.
76
85
. 10.1016/j.ijepes.2012.12.017
10.
Hossain
,
M. A.
,
Pota
,
H. R.
,
Squartini
,
S.
, and
Abdou
,
A. F.
,
2019
, “
Modified PSO Algorithm for Real-Time Energy Management in Grid-Connected Microgrids
,”
Renewable Energy
,
136
, pp.
746
757
. 10.1016/j.renene.2019.01.005
11.
Wang
,
X.
,
Lyu
,
Z.
, and
Sun
,
S.
,
2016
, “
Dynamic Economic/Environmental Dispatch for Stand-Alone Microgrid Based on Improved NSGA-II
,”
2016 35th Chinese Control Conference (CCC)
,
IEEE
, pp.
2652
2657
.
12.
Sathishkumar
,
R.
,
Malathi
,
V.
, and
Premka
,
V.
,
2016
, “
Optimization and Design of PV-Wind Hybrid System for DC Micro Grid Using NSGA II
,”
Circuits Syst.
,
7
(
07
), pp.
1106
1112
. 10.4236/cs.2016.77094
13.
Basu
,
A. K.
,
2013
, “
Microgrids: Planning of Fuel Energy Management by Strategic Deployment of CHP-Based DERs—An Evolutionary Algorithm Approach
,”
Int. J. Electr. Power Energy Syst.
,
44
(
1
), pp.
326
336
. 10.1016/j.ijepes.2012.07.059
14.
Yu
,
M.
,
Wang
,
Y.
, and
Li
,
Y.
,
2015
, “
Energy Management of Wind Turbine-Based DC Microgrid Utilizing Modified Differential Evolution Algorithm
,”
IET Conference Proceedings
. 10.1049/cp.2015.0417
15.
Colson
,
C.
,
Nehrir
,
M.
, and
Wang
,
C.
,
2009
, “
Ant Colony Optimization for Microgrid Multi-Objective Power Management
,”
2009 IEEE/PES Power Systems Conference and Exposition
,
Seattle, WA
,
Mar. 15–18
,
IEEE
, pp.
1
7
.
16.
Liu
,
R.
, and
Li
,
L.
,
2018
, “
Simulated Annealing Algorithm Coupled With a Deterministic Method for Parameter Extraction of Energetic Hysteresis Model
,”
IEEE Trans. Magn.
,
99
, pp.
1
5
.
17.
Katsigiannis
,
Y. A.
,
Georgilakis
,
P. S.
, and
Karapidakis
,
E. S.
,
2012
, “
Hybrid Simulated Annealing–Tabu Search Method for Optimal Sizing of Autonomous Power Systems With Renewables
,”
IEEE Trans. Sustainable Energy
,
3
(
3
), pp.
330
338
. 10.1109/TSTE.2012.2184840
18.
Abdmouleh
,
Z.
,
Gastli
,
A.
,
Ben-Brahim
,
L.
,
Haouari
,
M.
, and
Al-Emadi
,
N. A.
,
2017
, “
Review of Optimization Techniques Applied for the Integration of Distributed Generation From Renewable Energy Sources
,”
Renewable Energy
,
113
, pp.
266
280
. 10.1016/j.renene.2017.05.087
19.
Sedghi
,
M.
,
Ahmadian
,
A.
, and
Aliakbar-Golkar
,
M.
,
2016
, “
Assessment of Optimization Algorithms Capability in Distribution Network Planning: Review, Comparison and Modification Techniques
,”
Renewable Sustainable Energy Rev.
,
66
, pp.
415
434
. 10.1016/j.rser.2016.08.027
20.
Askarzadeh
,
A.
,
2017
, “
Optimisation of Solar and Wind Energy Systems: A Survey
,”
Int. J. Ambient Energy
,
38
(
7
), pp.
653
662
. 10.1080/01430750.2016.1155493
21.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of the IEEE International Conference on Neural Networks
, vol.
4
,
Citeseer
, pp.
1942
1948
.
22.
Gandhi
,
O.
,
Rodríguez-Gallegos
,
C. D.
, and
Srinivasan
,
D.
,
2016
, “
Review of Optimization of Power Dispatch in Renewable Energy System
,”
2016 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia)
,
IEEE
, pp.
250
257
.
23.
Khan
,
B.
, and
Singh
,
P.
,
2017
, “
Selecting a Meta-Heuristic Technique for Smart Micro-Grid Optimization Problem: A Comprehensive Analysis
,”
IEEE Access
,
5
, pp.
13951
13977
. 10.1109/ACCESS.2017.2728683
24.
Asghari
,
S.
, and
Navimipour
,
N. J.
,
2018
, “
Nature Inspired Meta-Heuristic Algorithms for Solving the Service Composition Problem in the Cloud Environments
,”
Int. J. Commun. Syst.
,
31
(
12
), p.
e3708
. 10.1002/dac.3708
25.
Fathima
,
A. H.
, and
Palanisamy
,
K.
,
2015
, “
Optimization in Microgrids With Hybrid Energy Systems—A Review
,”
Renewable Sustainable Energy Rev.
,
45
, pp.
431
446
. 10.1016/j.rser.2015.01.059
26.
Srinivas
,
N.
, and
Deb
,
K.
,
1994
, “
Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
. 10.1162/evco.1994.2.3.221
27.
Basu
,
M.
,
2013
, “
Combined Heat and Power Economic Emission Dispatch Using Nondominated Sorting Genetic Algorithm-II
,”
Int. J. Electr. Power Energy Syst.
,
53
, pp.
135
141
. 10.1016/j.ijepes.2013.04.014
28.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
. 10.1109/4235.996017
29.
Mehrabadi
,
E. S.
, and
Sathiakumar
,
S.
,
2018
, “
Optimal Scheduling of CHP-Based Industrial Microgrid
,”
2018 26th International Conference on Systems Engineering (ICSEng)
,
IEEE
, pp.
1
8
.
30.
Deb
,
K.
,
2014
, “Multi-Objective Optimization,”
Search Methodologies
,
Springer
,
New York
, pp.
403
449
.
31.
Wang
,
D.
,
Tan
,
D.
, and
Liu
,
L.
,
2018
, “
Particle Swarm Optimization Algorithm: An Overview
,”
Soft Comput.
,
22
(
2
), pp.
387
408
. 10.1007/s00500-016-2474-6
32.
Paulitschke
,
M.
,
Bocklisch
,
T.
, and
Böttiger
,
M.
,
2017
, “
Comparison of Particle Swarm and Genetic Algorithm Based Design Algorithms for PV-Hybrid Systems With Battery and Hydrogen Storage Path
,”
Energy Procedia
,
135
, pp.
452
463
. 10.1016/j.egypro.2017.09.509
33.
Fu
,
G.
,
Wang
,
C.
,
Zhang
,
D.
,
Zhao
,
J.
, and
Wang
,
H.
,
2019
, “
A Multiobjective Particle Swarm Optimization Algorithm Based on Multipopulation Coevolution for Weapon-Target Assignment
,”
Math. Problems Eng.
,
2019
.
34.
Salcedo-Sanz
,
S.
,
Pastor-Sánchez
,
A.
,
Portilla-Figueras
,
J.
, and
Prieto
,
L.
,
2016
, “
Effective Multi-Objective Optimization With the Coral Reefs Optimization Algorithm
,”
Eng. Optim.
,
48
(
6
), pp.
966
984
. 10.1080/0305215X.2015.1078139
35.
An
,
S.
,
Li
,
Q.
, and
Yang
,
S.
,
2015
, “
An Improved Light Beam Search Method in Multiobjective Inverse Problem Optimizations
,”
IEEE Trans. Magn.
,
52
(
3
), pp.
1
4
. 10.1109/TMAG.2015.2498405
36.
Derakhshandeh
,
S.
,
Masoum
,
A. S.
,
Deilami
,
S.
,
Masoum
,
M. A.
, and
Golshan
,
M. H.
,
2013
, “
Coordination of Generation Scheduling With PEVs Charging in Industrial Microgrids
,”
IEEE Trans. Power Syst.
,
28
(
3
), pp.
3451
3461
. 10.1109/TPWRS.2013.2257184
37.
Motevasel
,
M.
,
Seifi
,
A. R.
, and
Niknam
,
T.
,
2013
, “
Multi-Objective Energy Management of CHP (Combined Heat and Power)-Based Micro-Grid
,”
Energy
,
51
, pp.
123
136
. 10.1016/j.energy.2012.11.035
38.
Zitzler
,
E.
,
Thiele
,
L.
,
Laumanns
,
M.
,
Fonseca
,
C. M.
, and
Da Fonseca
,
V. G.
,
2003
, “
Performance Assessment of Multiobjective Optimizers: An Analysis and Review
,”
IEEE Trans. Evol. Comput.
,
7
(
2
), pp.
117
132
. 10.1109/TEVC.2003.810758
39.
Ghiasi
,
H.
,
Pasini
,
D.
, and
Lessard
,
L.
,
2010
, “
Pareto Frontier for Simultaneous Structural and Manufacturing Optimization of a Composite Part
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), pp.
497
511
. 10.1007/s00158-009-0366-4
You do not currently have access to this content.