Abstract

A transient heat transfer model is developed to study the thermal performance of a high-temperature solar thermochemical reactor for metal oxide reduction. The solar reactor consists of an indirectly irradiated tubular fluidized bed contained in a solar cavity receiver. Radiative heat transfer in the cavity, modeled with the Monte Carlo ray-tracing method, is coupled to conduction in the tube and cavity walls. Incident radiation distributions from a diffuse radiative source and a high-flux solar simulator are implemented separately in the model to study the influence of incident radiation directionality on the performance of the reactor. Maximum temperature, maximum thermal stress, start-up time, energy balance, and particle reduction rate for the proposed reactor concept are calculated to inform the design and optimization of a prototype reactor.

References

1.
Bader
,
R.
, and
Lipiński
,
W.
,
2017
, “Solar Thermal Processing,”
Advances in Concentrating Solar Thermal Research and Technology
,
M. J.
Blanco
, and
L. R.
Santigosa
, eds.,
Woodhead Publishing Series in Energy, Woodhead Publishing
,
Amsterdam
, pp.
403
459
.
2.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications
,”
Appl. Energy
,
104
, pp.
538
553
. 10.1016/j.apenergy.2012.11.051
3.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lázaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the art on High Temperature Thermal Energy Storage for Concentrated Power Generation. Part 1—Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
31
55
. 10.1016/j.rser.2009.07.035
4.
Herrmann
,
U.
, and
Kearney
,
D. W.
, “
Survey of Thermal Energy Storage for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
145
152
. 10.1115/1.1467601
5.
Lovegrove
,
K.
,
Luzzi
,
A.
, and
Kreetz
,
H.
,
1999
, “
A Solar-Driven Ammonia-Based Thermochemical Energy Storage System
,”
Sol. Energy
,
67
(
4–6
), pp.
309
316
. 10.1016/S0038-092X(00)00074-8
6.
Prieto
,
C.
,
Cooper
,
P.
,
Inés Fernández
,
A.
, and
Cabeza
,
L. F.
,
2016
, “
Review of Technology: Thermochemical Energy Storage for Concentrated Solar Power Plants
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
909
929
. 10.1016/j.rser.2015.12.364
7.
Pardo
,
P.
,
Deydier
,
A.
,
Anxionnaz-Minvielle
,
Z.
,
Rougé
,
S.
,
Cabassud
,
M.
, and
Cognet
,
P.
,
2014
, “
A Review on High Temperature Thermochemical Heat Energy Storage
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
591
610
. 10.1016/j.rser.2013.12.014
8.
Carrillo
,
A. J.
,
González-Aguilar
,
J.
,
Romero
,
M.
, and
Coronado
,
J. M.
,
2019
, “
Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials
,”
Chem. Rev.
,
119
(
7
), pp.
4777
4816
. 10.1021/acs.chemrev.8b00315
9.
Wong
,
B.
,
2011
,
Thermochemical Heat Storage for Concentrated Solar Power
,
Final Report for the US Department of Energy
,
San Diego, CA
.
10.
Koepf
,
E.
,
Alxneit
,
I.
,
Wieckert
,
C.
, and
Meier
,
A.
,
2017
, “
A Review of High Temperature Solar Driven Reactor Technology: 25 Years of Experience in Research and Development at the Paul Scherrer Institute
,”
Appl. Energy
,
88
, pp.
620
651
. 10.1016/j.apenergy.2016.11.088
11.
Kodama
,
T.
,
Bellan
,
S.
,
Gokon
,
N.
, and
Cho
,
H. S.
,
2017
, “
Particle Reactors for Solar Thermochemical Processes
,”
Sol. Energy
,
156
, pp.
113
132
. 10.1016/j.solener.2017.05.084
12.
Wheeler
,
V. M.
,
Bader
,
R.
,
Kreider
,
P. B.
,
Hangi
,
M.
,
Haussener
,
S.
, and
Lipiński
,
W.
,
2017
, “
Modelling of Solar Thermal Chemical Reaction Systems
,”
Sol. Energy
,
156
, pp.
149
168
. 10.1016/j.solener.2017.07.069
13.
Lei
,
Q.
,
Bader
,
R.
,
Kreider
,
P.
,
Lovegrove
,
K.
, and
Lipiński
,
W.
,
2017
, “
Thermodynamic Analysis of a Combined-Cycle Solar Thermal Power Plant With Manganese Oxide-Based Thermochemical Energy Storage
,”
E3S Web Conf.
,
22
, p.
00102
. 10.1051/e3sconf/20172200102
14.
Wang
,
B.
,
Wheeler
,
V. M.
,
Pottas
,
J.
,
Kreider
,
P. B.
, and
Lipiński
,
W.
,
2018
, “
Thermal Modelling of a Solar Thermochemical Reactor for Metal Oxide Reduction
,”
Proceedings of the IHTC-16 International Heat Transfer Conference
,
Beijing, China
,
Aug. 10
.
15.
Y. S.
Touloukian
,
1970
,
Thermophysical Properties of Matter, the TPRC Data Series
,
Y. S.
Touloukian
, ed.,
Springer
,
New York
.
16.
Accuratus
, “
Silicon Carbide Ceramic Properties
,” https://accuratus.com/silicar.html. Accessed May 30, 2019.
17.
Wünning
,
J. A.
, and
Wünning
,
J. G.
,
1997
, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
,
23
(
1
), pp.
81
94
. doi.org/10.1016/S0360-1285(97)00006-3
18.
ZIRCAR Ceramics
, “
Alumina Type ZAL-15
,” https://www.zircaceramics.com/product/zal-15/, Accessed January 9, 2018.
19.
ZIRCAR Ceramics
, “
Microporous Insulation Type MICROSIL
,” https://www.zircaceramics.com/product/microsil/, Accessed January 9, 2018.
20.
D.
Kunii
, and
O.
Levenspiel
,
1991
,
Fluidization Engineering
, 2nd ed.,
Butterworth-Heinemann
,
Newton
.10.1016/C2009-0-24190-0
21.
Bader
,
R.
,
Haussener
,
S.
, and
Lipiński
,
W.
,
2014
, “
Optical Design of Multisource High-Flux Solar Simulators
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021012
. 10.1016/C2009-0-24190-0
22.
Levêque
,
G.
,
Bader
,
R.
,
Lipiński
,
W.
, and
Haussener
,
S.
,
2016
, “
Experimental and Numerical Characterization of a New 45 KWel Multisource High-Flux Solar Simulator
,”
Opt. Express
,
24
(
22
), pp.
A1360
A1373
. 10.1364/OE.24.0A1360
23.
Li
,
L.
,
Wang
,
B.
,
Pottas
,
J.
, and
Lipiński
,
W.
,
2019
, “
Design of a Compound Parabolic Concentrator for a Multi-Source High-Flux Solar Simulator
,”
Sol. Energy
,
183
, pp.
805
811
. 10.1016/j.solener.2019.03.017
24.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
835
846
. 10.1016/j.rser.2013.08.099
25.
Taumoefolau
,
T.
,
Paitoonsurikarn
,
S.
,
Hughes
,
G.
, and
Lovegrove
,
K.
,
2004
, “
Experimental Investigation of Natural Convection Heat Loss From a Model Solar Concentrator Cavity Receiver
,”
ASME J. Sol. Energy Eng.
,
126
(
2
), pp.
801
807
. 10.1115/1.1687403
26.
Mickley
,
H. S.
, and
Fairbanks
,
D. F.
,
1955
, “
Mechanism of Heat Transfer to Fluidized Beds
,”
AIChE J.
,
1
(
3
), pp.
374
384
. 10.1002/aic.690010317
27.
Li
,
G.
,
Liu
,
J.
,
Jiang
,
G.
, and
Liu
,
H.
,
2015
, “
Numerical Simulation of Temperature Field and Thermal Stress Field in the new Type Ladle with the Nanometer Adiabatic Material
,”
Adv. Mech. Eng.
,
7
(
4
), p.
168781401557598
. 10.1177/1687814015575988
28.
ANSYS Academic Research
,
2019
,
Ansys Mechanical Theory Guide, Release 16.0
.
29.
American Elements, Manganese oxide (Mn2O3)
, https://www.americanelements.com/manganese-oxide-mn2o3-1317-34-6. Accessed June 14, 2019
30.
The Engineering Toolbox, Gases Dynamic Viscosity
, https://www.engineering toolbox.com/gases-absolute-dynamic-viscosity-d_1888.html. Accessed June 14, 2019.
31.
Ishikawa
,
T.
,
Kajii
,
S.
,
Matsunaga
,
K.
,
Hogami
,
T.
,
Kohtoku
,
Y.
, and
Nagasawa
,
T.
,
1998
, “
A Tough, Thermally Conductive Silicon Carbide Composite with High Strength up to 1600 °C in air
,”
Science
,
282
(
5392
), pp.
1295
1297
. 10.1126/science.282.5392.1295
32.
Martinek
,
J.
,
Bingham
,
C.
, and
Weimer
,
A. W.
,
2012
, “
Computational Modeling and On-Sun Model Validation for a Multiple Tube Solar Reactor With Specularly Reflective Cavity Wall. Part 1: Heat Transfer Model
,”
Chem. Eng. Sci.
,
22
(
310
), pp.
298
310
. 10.1016/j.ces.2012.06.064
33.
Kruesi
,
M.
,
Jovanovic
,
Z. R.
, and
Steinfeld
,
A.
,
2014
, “
A Two-Zone Solar-Driven Gasifier Concept: Reactor Design and Experimental Evaluation With Bagasse Particles
,”
Fuel
,
117
, pp.
680
687
. 10.1016/j.fuel.2013.09.011
34.
KYOCERA Global
, “
Technical Data Silicon Carbide
,” https://global.kyocera.com/prdct/fc/list/material/silicon_carbide/silicon_carbide.html. Accessed June 25, 2018.
35.
MakeItFrom
, “
Non-Oxide Engineering Ceramic Silicon Carbide
,” https://www.makeitfrom.com/material-properties/Silicon-Carbide-SiC
You do not currently have access to this content.