Abstract

The paper reviews the present understanding of the analysis of the heat and mass transfer processes in single-slope solar stills. By using the results of published experiments, it is proposed that the heat and mass transfer phenomena from the basin water to the glass cover are coupled. This coupling makes it possible to derive the dependence of the heat transfer coefficient for condensation on the inclination of the glass cover of the still. The derived relation, i.e., Nucon = 0.738 (Grcon*Prcon*sin β/Ja*)¼ A−1 where A is the aspect ratio, has been demonstrated to be an important expression for predicting the heat transfer coefficient for condensation hcon necessary for a more realistic evaluation of the overall efficiency of single-slope solar still of a given cover angle β.

References

1.
Lof
,
G. O. G.
,
1960
, “Design and Operating Principles in Solar Distillation Basins,”
Advances in Chemistry, Series #27, Saline Water Conversion
,
American Chemical Society
,
Washington, DC
, pp.
157
165
.
2.
Lof
,
G. O. G.
,
Eibling
,
J. A.
, and
Bloemer
,
J. W.
,
1961
, “
Energy Balance in Solar Distillers
,”
A.I.Ch.E. J.
,
7
(
4
), pp.
641
649
.
3.
Dunkle
,
R. V.
,
1961
, “
Solar Water Distillation, the Roof Type Still and Multiple Effect Diffusion Still
,”
Proceedings of the International Heat Transfer Conference, Part V—International Developments in Heat Transfer
,
University of Colorado, International Development in Heat Transfer, ASME, Proceedings of International Heat Transfer Part V
, pp.
895
902
.
4.
Baum
,
V. A.
, and
Bairamov
,
R.
,
1964
, “
Heat and Mass Transfer Processes in Solar Stills of Hotbox Type
,”
Solar Energy
,
8
(
3
), pp.
78
82
.
5.
Morse
,
R. N.
, and
Read
,
W. R. W.
,
1968
, “
A Rational Basis for the Engineering Development of a Solar Still
,”
Solar Energy
,
12
(
1
), pp.
5
17
.
6.
Cooper
,
P. I.
,
1969
, “
Digital Simulation of Transient Solar Still Processes
,”
Solar Energy
,
12
(
3
), pp.
313
331
.
7.
Cooper
,
P. I.
,
1973
, “
The Maximum Efficiency of Single-Effect Solar Stills
,”
Solar Energy
,
15
(
3
), pp.
205
217
.
8.
Solimann
,
S. H.
,
1972
, “
Effect of Wind on Solar Distillation
,”
Solar Energy
,
13
(
4
), pp.
403
415
.
9.
Nayak
,
J. K.
,
Tiwari
,
G. N.
, and
Sodha
,
M. S.
,
1980
, “
Periodic Theory of Solar Still
,”
Energy Res.
,
4
(
1
), pp.
41
57
.
10.
Sodha
,
M. S.
,
Nayak
,
J. K.
,
Singh
,
U.
, and
Tiwari
,
G. N.
,
1981
, “
Thermal Performance of a Solar Still
,”
J. Energy
,
5
(
6
), pp.
331
336
.
11.
Lof
,
G. O. G.
,
1980
, “
Solar Distillation
,”
Principles of Desalination, Part B
,
K. S.
Spiegler
, and
A. D. K.
Laird
, eds.,
Academic Press
,
New York
.
12.
Garg
,
H. P.
, and
Mann
,
H. S.
,
1976
, “
Effect of Climatic, Operational and Design Parameters on the Year-Round Performance of a Single-Sloped and Double-Sloped Solar Still Under India Arid Zone Conditions
,”
Solar Energy
,
18
(
2
), pp.
159
164
.
13.
Moustafa
,
S. M. A.
,
Brusewitz
,
G. M.
, and
Farmer
,
D. M.
,
1979
, “
Direct Use of Solar Energy for Water Desalination
,”
Solar Energy
,
22
(
3
), pp.
141
149
.
14.
Ding
,
P. H.
, and
Schmid
,
H.
,
1978
, “
Application of Solar Evaporation to Waste Water Treatment in Galvanoplasty
,”
Solar Energy
,
20
(
3
), pp.
205
211
.
15.
Szulmayer
,
W.
,
1973
, “
Solar Stils With low Thermal Inertia
,”
Solar Energy
,
14
(
4
), pp.
415
421
.
16.
Rheinlander
,
J.
,
1982
, “
Numerical Calculation of Heat and Mass Transfer in Solar Stills
,”
Solar Energy
,
28
(
2
), pp.
173
179
.
17.
Tiwari
,
G. N.
, and
Lawrence
,
S. A.
,
1991
, “
New Heat and Mass Transfer Relations for a Solar Still
,”
Energy Conv. Manage.
,
31
(
2
), pp.
201
203
.
18.
Hollands
,
K. G. T.
,
Unny
,
T. E.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1976
, “
Free Convective Heat Transfer Across Inclined air Layers
,”
ASME J. Heat Transfer
,
98
(
2
), pp.
189
193
.
19.
Tsilingiris
,
P. T.
,
2009
, “
Analysis of the Heat and Mass Transfer Processes in Solar Stills—The Validation of a Model
,”
Solar Energy
,
83
(
3
), pp.
420
431
.
20.
Tiwari
,
A. K.
, and
Tiwari
,
G. N.
,
2007
, “
Annual Performance Analysis and Thermal Modelling of Passive Solar Still for Different Inclinations of Condensing Cover
,”
Int. J. Energy Res.
,
31
(
14
), pp.
1358
1382
.
21.
Cooper
,
P. I.
, and
Read
,
W. R. W.
,
1974
, “
Design Philosophy and Operating Experience for Australian Solar Stills
,”
Solar Energy
,
16
(
1
), pp.
1
8
.
22.
Sparrow
,
E. M.
,
1973
, “
Radiant Interchange Between Surface Separated by Non-Absorbing and Non-Emitting Media
,”
Handbook of Heat Transfer
,
W. M.
Rohsenow
, and
J. F.
Harnett
, eds.,
McGraw-Hill
,
New York
, pp.
15
29
.
23.
Dunkle
,
R. V.
,
1973
, “
Radiation Exchange in an Enclosure With a Participating gas
,”
Handbook of Heat Transfer
,
W. M.
Rohsenow
, and
J. F.
Harnett
, eds.,
McGraw-Hill
,
New York
, pp.
15
53
.
24.
Rahbar
,
N.
, and
Esfahani
,
J. A.
,
2012
, “
Estimation of Convective Heat Transfer Coefficient in a Single-Slope Solar Still: a Numerical Study
,”
Desalin. Water Treat.
,
50
, pp.
387
396
.
25.
Corcione
,
M.
,
2003
, “
Effects of the Thermal Boundary Conditions at the Sidewalls Upon Natural Convection in Rectangular Enclosures Heated From Below and Cooled From Above
,”
Int. J. Therm. Sci.
,
42
, pp.
199
208
.
26.
Shawaqfeh
,
A. T.
, and
Farid
,
M. M.
,
1995
, “
New Development in the Theory of Heat and Mass Transfer in Solar Stills
,”
Solar Energy
,
55
, pp.
527
535
.
27.
Dwivedi
,
V. K.
, and
Tiwari
,
G. N.
,
2009
, “
Comparison of Internal Heat Transfer Coefficients in Passive Solar Stills by Different Thermal Models: An Experimental Validation
,”
Desalination
,
246
, pp.
304
318
.
28.
Nusselt
,
W.
,
1915
, “
Das Grundgesetz des Warmeuberganges
,”
Gesund. Ing.
,
38
, p.
872
.
29.
Rohsenow
,
W. M.
,
1956
, “
Heat Transfer and Temperature Distribution in Laminar Film Condensation
,”
Trans. ASME
,
78
, pp.
1645
1648
.
30.
Madhlopa
,
A.
, and
Clarke
,
J. A.
,
2011
, “
Theoretical Study of the Aspect Ratio of a Solar Still With Double Slope
,”
Proceedings of World Renewable Energy Congress
,
Linkoping, Sweden
,
May 8–13
, pp.
3873
3880
, LiU Press, Sweeden.
You do not currently have access to this content.