Air quality in major cities is reaching worrisome levels across the planet owing to large-scale industrialization. As a result, air purification systems are becoming a fertile and emerging field for research. Here, consideration is given to the use of a small-medium scale air purification system for cities using a kind of solar thermal panels by inducing local convective currents intended to be used in parks, housing estates, or similar urban places providing a local improvement of the quality of the air. The main difficulty which arose when attempting to use these convective currents is that the upward flow of hot air, which has been cleaned from contaminant particles during its upward travel, must be returned back to the ground. To accomplish this, air must be cooled during the travel in order to obtain an effective buoyancy. Several possible solutions have been proposed in the past, for example, the use of a dedicated cooling system as is the use of water spraying systems which could be an attractive option for large towers. However, for small-medium scale air cleaners, dedicated spraying cooling systems are out of question either because of the requirement of water flow or because of the high local humidity generated which can be uncomfortable for humans. One possible solution could be taking advantage of vertical panels in which a side of the panel is permanently irradiated and the other is permanently in the shadow; in this way, heating and cooling could be performed eliminating the need for specialized cooling systems, and although the effective buoyancy—and then the purified air mass flow—of such a system is considerably reduced, nevertheless, it could still be acceptable for local small-scale applications. Utilizing a simplified physical model, the effective buoyancy and attainable air mass flow were calculated. It is shown that for a small panel of 5 m-height or thereabouts, an air flow per unit of width ∼0.4 kg/s is attainable, and for a 10 m-height panel, an air flow per unit of width 0.6 kg/s is attainable. Computational fluid dynamics simulations were performed which agree with the analytical results within ±30 %.
Skip Nav Destination
Article navigation
December 2019
Research-Article
Solar Thermal Panels for Small-Medium Scale Air Cleaners in Major Cities
Francisco J. Arias,
Francisco J. Arias
1
Department of Fluid Mechanics,
ESEIAATC/Colom 11,
Barcelona 08222,
e-mail: francisco.javier.arias@upc.edu
University of Catalonia
,ESEIAATC/Colom 11,
Barcelona 08222,
Spain
e-mail: francisco.javier.arias@upc.edu
1Corresponding author.
Search for other works by this author on:
Salvador De Las Heras
Salvador De Las Heras
Department of Fluid Mechanics,
ESEIAATC/Colom 11,
Barcelona 08222,
e-mail: salvador.delasheras@upc.edu
University of Catalonia
,ESEIAATC/Colom 11,
Barcelona 08222,
Spain
e-mail: salvador.delasheras@upc.edu
Search for other works by this author on:
Francisco J. Arias
Department of Fluid Mechanics,
ESEIAATC/Colom 11,
Barcelona 08222,
e-mail: francisco.javier.arias@upc.edu
University of Catalonia
,ESEIAATC/Colom 11,
Barcelona 08222,
Spain
e-mail: francisco.javier.arias@upc.edu
Salvador De Las Heras
Department of Fluid Mechanics,
ESEIAATC/Colom 11,
Barcelona 08222,
e-mail: salvador.delasheras@upc.edu
University of Catalonia
,ESEIAATC/Colom 11,
Barcelona 08222,
Spain
e-mail: salvador.delasheras@upc.edu
1Corresponding author.
Contributed by the Solar Energy Division of ASME for publication in the Journal of Solar Energy Engineering: Including Wind Energy and Building Energy Conservation. Manuscript received July 8, 2018; final manuscript received May 5, 2019; published online May 28, 2019. Assoc. Editor: Ming Qu.
J. Sol. Energy Eng. Dec 2019, 141(6): 061006 (6 pages)
Published Online: May 28, 2019
Article history
Received:
July 8, 2018
Revision Received:
May 5, 2019
Accepted:
May 8, 2019
Citation
Arias, F. J., and Heras, S. D. L. (May 28, 2019). "Solar Thermal Panels for Small-Medium Scale Air Cleaners in Major Cities." ASME. J. Sol. Energy Eng. December 2019; 141(6): 061006. https://doi.org/10.1115/1.4043752
Download citation file:
395
Views
Get Email Alerts
Cited By
Analysis of Erosion of Surfaces in Falling Particle Concentrating Solar Power
J. Sol. Energy Eng (April 2025)
Related Articles
Numerical Investigation on the Influence of Wet Compression Aerodynamic Performance of Multi-Stage Transonic Compressor
J. Turbomach (January,0001)
LES and RANS Investigations Into Buoyancy-Affected Convection in a Rotating Cavity With a Central Axial Throughflow
J. Eng. Gas Turbines Power (April,2007)
Influence of Buoyancy and Inter-Surface Radiation on Confined Jet Impingement Cooling of a Semi-Cylindrical Concave Plate
J. Heat Mass Transfer (March,2024)
Numerical Analysis of Heat Loss From a Parabolic Trough Absorber Tube With Active Vacuum System
J. Sol. Energy Eng (August,2011)
Related Proceedings Papers
Related Chapters
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
Machine Vision Based Spraying Control of Agricultural Machinery
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential