The tubular light guides are devices allowing deliverance of solar light into deep interior rooms, offices, or underground spaces. Due to considerable costs of such systems, the reasonable assessment of their lighting performance is desirable. To predict accurately their efficiency, precise numerical computations have to be performed. Such computations may be strongly time consuming, mainly when mass calculations are required as it is in case of the so-called climate-based daylight modeling. This paper presents an analytical solution to the optical efficiency of cylindrical straight pipes that is applicable over a wide range of pipe’s parameters and under arbitrary sky luminance conditions. The proposed method gives results in good agreement with ray-tracing numerical simulations—the mean absolute percentage errors are less than 3%—but unlike them, the calculations are much faster. Therefore, it appears to be convenient for daylight modeling, which takes into account utilization of tubular light guide systems in buildings.

References

1.
Boyce
,
P. R.
,
2014
,
Human Factors in Lighting
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
2.
Mayhoub
,
M. S.
, and
Carter
,
D. J.
,
2010
, “
The Costs and Benefits of Using Daylight Guidance to Light Office Buildings
,”
Build. Environ.
,
46
(
3
), pp.
698
710
.
3.
Mardaljevic
,
J.
,
Heschong
,
L.
, and
Lee
,
E.
,
2009
, “
Daylight Metrics and Energy Savings
,”
Lighting Res. Technol.
,
41
(
3
), pp.
261
283
.
4.
Patil
,
K. N.
,
Kaushik
,
S. C.
, and
Garg
,
S. N.
,
2018
, “
Performance Prediction and Assessment of Energy Conservation Potential for a Light Pipe System in Indian Composite Climate of New Delhi
,”
J. Sol. Energ. Eng.
,
140
(
5
), p.
051012
.
5.
Al Marwaee
,
M.
, and
Carter
,
D. J.
,
2006
, “
A Field Study of Tubular Daylight Guidance Installation
,”
Lighting Res. Technol.
,
38
(
3
), pp.
241
258
.
6.
Mohelníková
,
J.
,
2009
, “
Tubular Light Guide Evaluation
,”
Build. Environ.
,
44
(
10
), pp.
2193
2200
.
7.
Carter
,
D.
,
2014
, “
LRT Digest 2 Tubular Daylight Guidance Systems
,”
Lighting Res. Technol.
,
46
(
4
), pp.
369
387
.
8.
Kocifaj
,
M.
,
Darula
,
S.
, and
Kittler
,
R.
,
2008
, “
HOLIGILM: Hollow Light Guide Interior Illumination Method—An Analytic Calculation Approach for Cylindrical Light-Tubes
,”
Sol. Energ.
,
82
(
3
), pp.
247
259
.
9.
Laouadi
,
A.
,
Galasiu
,
A. D.
,
Saber
,
H. H.
, and
Arsenault
,
C.
,
2013
, “
Tubular Daylighting Devices—Part I: Development of an Optical Model (1415-RP)
,”
HVAC&R Res.
,
19
(
5
), pp.
536
556
.
10.
Zastrow
,
A.
, and
Wittwer
,
V.
,
1987
, “
Daylighting With Mirror Light Pipes and With Fluorescent Planar Concentrators. First Results From the Demonstration Project Stuttgart-Hohenheim
,”
Proc. SPIE
,
692
, pp.
227
234
.
11.
Swift
,
P. D.
, and
Smith
,
G. B.
,
1995
, “
Cylindrical Mirror Light Pipes
,”
Sol. Energ. Mat. Sol. C.
,
36
(
2
), pp.
159
168
.
12.
Commission International de l’Eclairage (CIE)
,
2006
,
Tubular Daylight Guidance Systems, CIE Publication 173:2006
,
Bureau Central CIE
,
Vienna, Austria
.
13.
Petržala
,
J.
,
Kocifaj
,
M.
, and
Kómar
,
L.
,
2018
, “
Accurate Tool for Express Optical Efficiency Analysis of Cylindrical Light-Tubes With Arbitrary Aspect Ratios
,”
Sol. Energ.
,
169
, pp.
264
269
.
14.
Kittler
,
R.
,
1999
, “
Universal Modelling of Daylight Climates for Design Purposes
,”
Arch. Sci. Rev.
,
42
(
2
), pp.
75
78
.
15.
Perez
,
R.
,
Seals
,
R.
, and
Michalsky
,
J.
,
1993
, “
All-Weather Model for Sky Luminance Distribution—Preliminary Configuration and Validation
,”
Sol. Energ.
,
50
(
3
), pp.
235
245
.
16.
Perez
,
R.
,
Ineichen
,
P.
,
Seals
,
R.
,
Michalsky
,
J.
, and
Stewart
,
R.
,
1990
, “
Modeling Daylight Availability and Irradiance Components From Direct and Global Irradiance
,”
Sol. Energ.
,
44
(
5
), pp.
271
289
.
You do not currently have access to this content.