Concentrated solar power (CSP) plants have the potential to reduce the consumption of nonrenewable resources and greenhouse gas emissions in electricity production. In CSP systems, a field of heliostats focuses solar radiation on a central receiver, and energy is then transferred to a thermal power plant at high temperature. However, maximum receiver surface fluxes are low (30–100 W cm−2) with high thermal losses, which has contributed to the limited market penetration of CSP systems. Recently, small (∼4 cm2), laminated micro pin-fin devices have shown potential to achieve concentrated surface fluxes over 100 W cm−2 using supercritical CO2 as the working fluid. The present study explores the feasibility of using these microscale unit cells as building blocks for a megawatt-scale (250 MW thermal) open solar receiver through a numbering-up approach, where multiple microscale unit cell devices are connected in parallel. A multiscale model of the full-scale central receiver is developed. The model consists of interconnected unit cell and module level (i.e., multiple unit cells in parallel) submodels which predict local performance of the central receiver. Each full-scale receiver consists of 3000 micro pin-fin unit cells divided into 250 modules. The performance of three different full-scale receivers is simulated under representative operating conditions. The results show that the microscale unit cells have the potential to be numbered up to megawatt applications while providing high heat flux and thermal efficiency. At the design incident flux and surface emissivity, a global receiver efficiency of approximately 90% when heating sCO2 from 550 °C to 650 °C at an average incident flux of 110 W cm−2 can be achieved.

References

1.
Goswami
,
D. Y.
,
2015
,
Principles of Solar Engineering
,
CRC Press
,
Boca Raton, FL
.
2.
Ortega
,
J. I.
,
Burgaleta
,
J. I.
, and
Téllez
,
F. M.
,
2008
, “
Central Receiver System Solar Power Plant Using Molten Salt as Heat Transfer Fluid
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
024501
.
3.
Stine
,
W.
, and
Geyer
,
M.
,
2001
, “
Power From the Sun
,”
Power From The Sun
, Pomona, CA.http://www.powerfromthesun.net/
4.
Margolis
,
R.
,
Coggeshall
,
C.
, and
Zuboy
,
J.
,
2012
, “
Sunshot Vision Study
,”
U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Washington, DC
.
5.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energy
,
111
, pp.
957
970
.
6.
Garg
,
P.
,
Kumar
,
P.
, and
Srinivasan
,
K.
,
2013
, “
Supercritical Carbon Dioxide Brayton Cycle for Concentrated Solar Power
,”
J. Supercrit. Fluids
,
76
, pp.
54
60
.
7.
Dunham
,
M. T.
, and
Iverson
,
B. D.
,
2014
, “
High-Efficiency Thermodynamic Power Cycles for Concentrated Solar Power Systems
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
758
770
.
8.
Kolb
,
G. J.
,
2011
, “
An Evaluation of Possible Next-Generation High-Temperature Molten-Salt Power Towers
,” Sandia National Laboratories, Albuquerque, NM,
Report No. SAND2011-9320
.http://large.stanford.edu/courses/2014/ph241/dunham1/docs/119320.pdf
9.
Romero
,
M.
,
Buck
,
R.
, and
Pacheco
,
J. E.
,
2002
, “
An Update on Solar Central Receiver Systems, Projects, and Technologies
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
98
108
.
10.
Kolb
,
G. J.
,
Ho
,
C. K.
,
Mancini
,
T. R.
, and
Gary
,
J. A.
,
2011
, “
Power Tower Technology Roadmap and Cost Reduction Plan
,” Sandia National Laboratories, Albuquerque, NM,
Report No. SAND2011-2419
.http://www.ezklein.org/wp-content/uploads/2012/02/TowerRoadmap-track-changes-EZKleins-contribution.pdf
11.
Garimella
,
S. V.
,
Singhal
,
V.
, and
Liu
,
D.
,
2006
, “
On-Chip Thermal Management With Microchannel Heat Sinks and Integrated Micropumps
,”
Proc. IEEE
,
94
(
8
), pp.
1534
1548
.
12.
Fronk
,
B. M.
, and
Garimella
,
S.
,
2011
, “
Water-Coupled Carbon Dioxide Microchannel Gas Cooler for Heat Pump Water Heaters: Part I—Experiments
,”
Int. J. Refrig.
,
34
(
1
), pp.
7
16
.
13.
Fronk
,
B. M.
, and
Garimella
,
S.
,
2011
, “
Water-Coupled Carbon Dioxide Microchannel Gas Cooler for Heat Pump Water Heaters: Part II—Model Development and Validation
,”
Int. J. Refrig.
,
34
(
1
), pp.
17
28
.
14.
Khan
,
M. G.
, and
Fartaj
,
A.
,
2011
, “
A Review on Microchannel Heat Exchangers and Potential Applications
,”
Int. J. Energy Res.
,
35
(
7
), pp.
553
582
.
15.
L'Estrange
,
T.
,
Truong
,
E.
,
Rasouli
,
E.
,
Narayanan
,
V.
,
Rymal
,
C.
,
Apte
,
S.
, and
Drost
,
K.
,
2015
, “
High Flux Microscale Solar Thermal Receiver for Supercritical Carbon Dioxide Cycles
,”
ASME
Paper No. ICNMM2015-48233.
16.
Rymal
,
C.
,
Apte
,
A. V.
,
Narayanan
,
V.
, and
Drost
,
K.
,
2013
, “
Numerical Design of a High-Flux Microchannel Solar Receiver
,”
ASME
Paper No. ES2013-18353.
17.
Schenk
,
R.
,
Hessel
,
V.
,
Hofmann
,
C.
,
Kiss
,
J.
,
Löwe
,
H.
, and
Ziogas
,
A.
,
2004
, “
Numbering-Up of Micro Devices: A First Liquid-Flow Splitting Unit
,”
Chem. Eng. J.
,
101
(
1–3
), pp.
421
429
.
18.
Yao
,
Z.
,
Wang
,
Z.
,
Lu
,
Z.
, and
Wei
,
X.
,
2009
, “
Modeling and Simulation of the Pioneer 1 MW Solar Thermal Central Receiver System in China
,”
Renewable Energy
,
34
(
1
), pp.
2437
2446
.
19.
Yu
,
Q.
,
Wang
,
Z.
,
Xu
,
E.
,
Li
,
X.
, and
Guo
,
M.
,
2012
, “
Modeling and Dynamic Simulation of the Collector and Receiver System of 1 MWe DAHAN Solar Thermal Power Tower Plant
,”
Renewable Energy
,
43
(
1
), pp.
18
29
.
20.
He
,
Y. L.
,
Cui
,
F. Q.
,
Cheng
,
Z. D.
,
Li
,
Z. Y.
, and
Tao
,
W. Q.
,
2013
, “
Numerical Simulation of Solar Radiation Transmission Process for the Solar Tower Power Plant: From the Heliostat Field to the Pressurized Volumetric Receiver
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
583
595
.
21.
Fernández
,
P.
, and
Miller
,
F. J.
,
2015
, “
Performance Analysis and Preliminary Design Optimization of a Small Particle Heat Exchange Receiver for Solar Tower Power Plants
,”
Sol. Energy
,
112
, pp.
458
468
.
22.
Garbrecht
,
O.
,
Al-Sibai
,
F.
,
Kneer
,
R.
, and
Wieghardt
,
K.
,
2013
, “
CFD-Simulation of a New Receiver Design for a Molten Salt Solar Power Tower
,”
Sol. Energy
,
90
, pp.
94
106
.
23.
Rodríguez-Sánchez
,
M. R.
,
Marugan-Cruz
,
C.
,
Acosta-Iborra
,
A.
, and
Santana
,
D.
,
2014
, “
Comparison of Simplified Heat Transfer Models and CFD Simulations for Molten Salt External Receiver
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
993
1005
.
24.
Besarati
,
S. M.
,
Yogi Goswami
,
D.
, and
Stefanakos
,
E. K.
,
2015
, “
Development of a Solar Receiver Based on Compact Heat Exchanger Technology for Supercritical Carbon Dioxide Power Cycles
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031018
.
25.
Haynes International
,
2016
, “
Haynes® 230® Alloy
,”
Haynes International, Inc.
, Kokomo, IN.http://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/230-brochure.pdf
26.
Klein
,
S. A.
,
2014
, “
F-Chart Software
,” EES, Madison, WI.
27.
Bergman
,
T.
,
Lavine
,
A.
,
Incropera
,
F.
, and
Dewitt
,
D.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Holboken, NJ
.
28.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
.
29.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature of 1100 K at Pressure up to 800 MPa
,”
J. Phys Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
30.
Koşar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
419
430
.
31.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro-Pin-Fins—Part I: Heat Transfer Characteristics
,”
ASME J. Heat Transfer
,
130
(
12
), p.
122402
.
32.
Zukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Cross Flow
,”
Adv. Heat Transfer
,
8
, pp.
93
160
.
You do not currently have access to this content.