Solar energy converted and fed to the utility grid by photovoltaic modules has increased significantly over the last few years. This trend is expected to continue. Photovoltaics (PV) energy forecasts are thus becoming more and more important. In this paper, the PV energy forecasts are used for a predictive energy management system (PEMS) in a positive energy building. The publication focuses on the development and comparison of different models for daily PV energy prediction taking into account complex shading, caused for example by trees. Three different forecast methods are compared. These are a physical model with local shading measurements, a multilayer perceptron neural network (MLP), and a combination of the physical model and the neural network. The results show that the combination of the physical model and the neural network provides the most accurate forecast values and can improve adaptability. From April to December, the mean percentage error (MPE) of the MLP with physical information is 11.6%. From December to March, the accuracy of the PV predictions decreases to an MPE of 78.8%. This is caused by poorer irradiation forecasts, but mainly by snow coverage of the PV modules.

References

1.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Energy Build.
,
40
(
3
), pp.
394
398
.10.1016/j.enbuild.2007.03.007
2.
European Parliament-Committee on Industry, Research and Energy, “
All New Buildings to Be Zero Energy From 2019
,” Oct. 7, 2014. Available at: http://www.europarl.europa.eu/sides/getDoc.do?language=en&type=IM-PRESS&reference=20090330IPR52892
3.
Paoli
,
C.
,
Voyant
,
C.
,
Muselli
,
M.
, and
Nivet
,
M.
,
2010
, “
Forecasting of Preprocessed Daily Solar Radiation Time Series Using Neural Networks
,”
Solar Energy
,
84
(
12
), pp.
2146
2160
.10.1016/j.solener.2010.08.011
4.
Mellit
,
A.
, and
Pavan
,
A. M.
,
2010
, “
A 24-h Forecast of Solar Irradiance Using Artificial Neural Network: Application for Performance Prediction of a Grid-Connected PV Plant at Trieste, Italy
,”
Solar Energy
,
84
(
5
), pp.
807
821
.10.1016/j.solener.2010.02.006
5.
Almonacid
,
F.
,
Rus
,
C.
,
Pérez-Higueras
,
P.
, and
Hontoria
,
L.
,
2011
, “
Calculation of the Energy Provided by a PV Generator. Comparative Study: Conventional Methods vs. Artificial Neural Networks
,”
Energy
,
36
(
1
), pp.
375
384
.10.1016/j.energy.2010.10.028
6.
Osterwald
,
C.
,
1986
, “
Translation of Device Performance Measurements to Reference Conditions
,”
Solar Cells
,
18
(
3–4
), pp.
269
279
.10.1016/0379-6787(86)90126-2
7.
Zhou
,
W.
,
Yang
,
H.
, and
Fang
,
Z.
,
2007
, “
A Novel Model for Photovoltaic Array Performance Prediction
,”
Appl. Energy
,
84
(
12
), pp.
1187
1198
.10.1016/j.apenergy.2007.04.006
8.
De Soto
,
W.
,
Klein
,
S. A.
, and
Beckman
,
W. A.
,
2006
, “
Improvement and Validation of a Model for Photovoltaic Array Performance
,”
Solar Energy
,
80
(
1
), pp.
78
88
.10.1016/j.solener.2005.06.010
9.
Taherbaneh
,
M.
,
Farahani
,
G.
, and
Rahmani
,
K.
,
2011
, “
Evaluation the Accuracy of One-Diode and Two-Diode Models for a Solar Panel Based Open-Air Climate Measurements
,”
Solar Cells-Silicon Wafer-Based Technologies
,
InTech
,
Rijeka, Croatia
.
10.
Ishaque
,
K.
,
Salam
,
Z.
, and
Taheri
,
H.
,
2011
, “
Simple, Fast and Accurate Two-Diode Model for Photovoltaic Modules
,”
Solar Energy Mater. Solar Cells
,
95
(
2
), pp.
586
594
.10.1016/j.solmat.2010.09.023
11.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
, 2nd ed.,
Wiley
,
New York
.
12.
Su
,
Y.
,
Chan
,
L.
,
Shu
,
L.
, and
Tsui
,
K.
,
2012
, “
Real-Time Prediction Models for Output Power and Efficiency of Grid-Connected Solar Photovoltaic Systems
,”
Appl. Energy
,
93
, pp.
319
326
.10.1016/j.apenergy.2011.12.052
13.
Mellit
,
A.
, and
Kalogirou
,
S. A.
,
2008
, “
Artificial Intelligence Techniques for Photovoltaic Applications: A Review
,”
Prog. Energy Combust. Sci.
,
34
(
5
), pp.
574
632
.10.1016/j.pecs.2008.01.001
14.
Almonacid
,
F.
,
Rus
,
C.
,
Pérez
,
P. J.
, and
Hontoria
,
L.
,
2009
, “
Estimation of the Energy of a PV Generator Using Artificial Neural Network
,”
Renewable Energy
,
34
(
12
), pp.
2743
2750
.10.1016/j.renene.2009.05.020
15.
Chow
,
S. K. H.
,
Lee
,
E. W. M.
, and
Li
,
D. H. W.
,
2012
, “
Short-Term Prediction of Photovoltaic Energy Generation by Intelligent Approach
,”
Energy Build.
,
55
, pp.
660
667
.10.1016/j.enbuild.2012.08.011
16.
Sfetsos
,
A.
, and
Coonick
,
A. H.
,
2000
, “
Univariate and Multivariate Forecasting of Hourly Solar Radiation With Artificial Intelligence Techniques
,”
Solar Energy
,
68
(
2
), pp.
169
178
.10.1016/S0038-092X(99)00064-X
17.
Yona
,
A.
,
Senjyu
,
T.
,
Saber
,
A.
,
Funabashi
,
T.
,
Sekine
,
H.
, and
Chul
,
H. K.
,
2008
, “
Application of Neural Network to 24-hour-Ahead Generating Power Forecasting for PV System
,” 2008
IEEE
Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century
, pp.
1
6
.10.1541/ieejpes.128.33
18.
Quaschning
,
V.
,
1996
,
Simulation der Abschattungsverluste bei solarelektrischen Systemen
, 1st ed.,
Köster
,
Berlin
.
19.
Drif
,
M.
,
Pérez
,
P. J.
,
Aguilera
,
J.
, and
Aguilar
,
J. D.
,
2008
, “
A New Estimation Method of Irradiance on a Partially Shaded PV Generator in Grid-Connected Photovoltaic Systems
,”
Renewable Energy
,
33
(
9
), pp.
2048
2056
.10.1016/j.renene.2007.12.010
20.
Syafaruddin
,
Karatepe
,
E.
, and
Hiyama
,
T.
,
2009
, “
Artificial Neural Network-Polar Coordinated Fuzzy Controller Based Maximum Power Point Tracking Control Under Partially Shaded Conditions
,”
Renewable Power Gener., IET
,
3
(
2
), pp.
239
253
.10.1049/iet-rpg:20080065
21.
Deline
,
C. A.
,
2009
, “
Partially Shaded Operation of a Grid-Tied PV System
,” Proceedings of the 34th
IEEE
Photovoltaic Specialists Conference (PVSC)
, Philadelphia, PA, June 7–12, pp.
001268
001273
.10.1109/PVSC.2009.5411246
22.
Schwarz
, “
Impressionen des Effizienzhaus Plus
,” Accessed Oct. 7, 2014. Available at: http://www.bmvbs.de/SharedDocs/DE/Fotoreihen/Mediathek/Presse-und-Leitungstermine/2011/111206-ehp-impressionen.html?nn=75502
23.
Figueiredo
,
J.
, and
Sá da Costa
,
J.
,
2012
, “
A SCADA System for Energy Management in Intelligent Buildings
,”
Energy Build.
,
49
, pp.
85
98
.10.1016/j.enbuild.2012.01.041
24.
Lefort
,
A.
,
Bourdais
,
R.
,
Ansanay-Alex
,
G.
, and
Guéguen
,
H.
,
2013
, “
Hierarchical Control Method Applied to Energy Management of a Residential House
,”
Energy Build.
,
64
, pp.
53
61
.10.1016/j.enbuild.2013.04.010
25.
Perez
,
E.
,
Beltran
,
H.
,
Aparicio
,
N.
, and
Rodriguez
,
P.
,
2013
, “
Predictive Power Control for PV Plants With Energy Storage
,”
IEEE Trans. Sustain. Energy
,
4
(
2
), pp.
482
490
.10.1109/TSTE.2012.2210255
26.
Zhang
,
H.
,
Davigny
,
A.
,
Colas
,
F.
,
Poste
,
Y.
, and
Robyns
,
B.
,
2012
, “
Fuzzy Logic Based Energy Management Strategy for Commercial Buildings Integrating Photovoltaic and Storage Systems
,”
Energy Build.
,
54
, pp.
196
206
.10.1016/j.enbuild.2012.07.022
27.
Walraven
,
R.
,
1978
, “
Calculating the Position of the Sun
,”
Solar Energy
,
20
(
5
), pp.
393
397
.10.1016/0038-092X(78)90155-X
28.
Reindl
,
D. T.
,
Beckman
,
W. A.
, and
Duffie
,
J. A.
,
1990
, “
Diffuse Fraction Correlations
,”
Solar Energy
,
45
(
1
), pp.
1
7
.10.1016/0038-092X(90)90060-P
29.
Temps
,
R. C.
, and
Coulson
,
K. L.
,
1977
, “
Solar Radiation Incident Upon Slopes of Different Orientations
,”
Solar Energy
,
19
(
2
), pp.
179
184
.10.1016/0038-092X(77)90056-1
30.
Luque
,
A.
, and
Hegedus
,
S.
,
2003
,
Handbook of Photovoltaic Science and Engineering
,
Wiley
,
Hoboken, NJ
10.1002/0470014008.
31.
Haeberlin
,
H.
,
Borgia
,
L.
,
Kaempfer
,
M.
, and
Zwahle
,
U.
,
2006
, New Tests at Grid-Connected PV Inverters: Overview Over Test Results and Measured Values of Total Efficiency ηtot, 21st European Photovoltaic Solar Energy Conference, Dresden.
32.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Internal Representations by Error Propagation
,”
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
,” Vol.
1
,
D. E.
Rumelhart
,
J. L.
McClelland
, and PDP Research Group C, eds.,
MIT Press
,
Cambridge, MA
, pp.
318
362
.
33.
Kalogirou
,
S. A.
,
2001
, “
Artificial Neural Networks in Renewable Energy Systems Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
5
(
4
), pp.
373
401
.10.1016/S1364-0321(01)00006-5
34.
Almonacid
,
F.
,
Rus
,
C.
,
Hontoria
,
L.
, and
Muñoz
,
F. J.
,
2010
, “
Characterisation of PV CIS Module by Artificial Neural Networks. A Comparative Study With Other Methods
,”
Renewable Energy
,
35
(
5
), pp.
973
980
.10.1016/j.renene.2009.11.018
35.
Mcgill
,
R.
,
Tukey
,
J. W.
, and
Larsen
,
W. A.
,
1978
, “
Variations of Box Plots
,”
Am. Statist.
,
32
(
1
), pp.
12
16
.10.2307/2683468
You do not currently have access to this content.