One of the major challenges preventing the concentrated solar power (CSP) industry from occupying a greater portion of the world's energy portfolio are unattractive start up and operating costs for developers and investors. In order to overcome these reservations, plant designers must be able to achieve greater efficiencies of power production. Molten salt nitrates are ideal candidates for CSP heat transfer fluids and have been proposed to offer significant performance advantages over current silicone based oil heat transfer fluids. Ternary molten salt nitrates offer high operating temperatures while maintaining low freezing temperatures. However, a shortage of important thermophysical property data exists for these salts. Previous work has shown the ternary compositions of LiNO3–NaNO3–KNO3 salts offer the widest possible temperature range for use in a CSP system. The present work contains data for the viscosity, specific heat, and latent heat of some mixtures of these salts at various temperatures, providing vital information for plant designers to optimize power generation and attract future investment to CSP systems.

References

1.
Solutia Inc.
,
2013
, “
Therminol VP-1 Vapor Phase/Liquid Phase Heat Transfer Fluid. Therminol VP-1 Properties Information
,”
Solutia Inc.
,
Trenton, MI
.
2.
Hale
,
M.
,
1999
, “
Solar II Performance Evaluation
,” Report No. NREL CP-550-26642.
3.
Stern
,
K. H.
,
2001
,
High Temperature Properties and Thermal Decomposition of Inorganic Salts With Oxyanions
,
CRC Press
,
Boca Raton, FL
.
4.
Janz
,
G. J.
,
Allen
,
C. B.
,
Bansal
,
N. P.
,
Murphy
,
R. M.
, and
Tomkins
,
R. P. T.
,
1979
, “
Physical Properties Data Compilation Relevant to Energy Storage II. Molten Salts: Data on Single and Multi-Component Salt Systems
,” NSRDS-National Standard Reference Data System Report No. NSRDS-NBS 61.
5.
Coscia
,
K.
,
Nelle
,
S.
,
Elliott
,
T.
,
Mohapatra
,
S.
,
Oztekin
,
A.
, and
Neti
,
S.
,
2011
, “
The Thermophysical Properties of the NaNO3–KNO3, LiNO3–NaNO3, and LiNO3–KNO3 Systems
,”
ASME
Paper No. IMECE2011-64465.10.1115/IMECE2011-64465
6.
Kearney
,
D.
,
Herrmann
,
U.
,
Nava
,
P.
, and
Kelly
,
B.
,
2003
, “
Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field
,”
ASME J. Sol. Energy Eng.
,
125
, pp.
170
190
.10.1115/1.1565087
7.
Coscia
,
K.
,
Elliott
,
T.
,
Mohapatra
,
S.
,
Oztekin
,
A.
, and
Neti
,
S.
,
2012
, “
Binary and Ternary Nitrate Solar Heat Transfer Fluids
,”
ASME J. Sol. Energy Eng.
,
135
(
2
), p.
021011
.10.1115/1.4023026
8.
Coscia
,
K.
,
Nelle
,
S.
,
Elliott
,
T.
,
Mohapatra
,
S.
,
Oztekin
,
A.
, and
Neti
,
S.
,
2012
Ternary Molten Salt Heat Transfer Fluids for Energy Applications
,”
Proceedings of the ASME Summer Heat Transfer Conference, Rio Grande
,
Puerto Rico
, July 8–12, ASME Paper No. HT2012-58281.
9.
Bradshaw
,
R. W.
, and
Tyner
,
C. E.
,
1988
, “
Chemical and Engineering Factors Affecting Solar Central Receiver Applications of Ternary Molten Salts
,” Sandia National Laboratories, Report No. SAND88-8686.
10.
Bradshaw
,
R. W.
,
2010
, “
Viscosity of Multi-Component Molten Nitrate Salts—Liquidus to 200 °C
,” Sandia Report No. SAND2010-1129.
11.
Bradshaw
,
R. W.
, and
Meeker
,
D. E.
,
1990
, “
High-Temperature Stability of Ternary Nitrate Molten Salts for Solar Thermal Energy Systems
,”
ASME J. Sol. Energy Mater.
,
21
, pp.
51
60
.10.1016/0165-1633(90)90042-Y
12.
Coastal Chemical Co.
,
L.L.C.
, 2004, “
HITEC® Heat Transfer Salt. Technical Data Guide
,”
Coastal Chemical Co.
,
L.L.C, Houston, TX
.
13.
Raade
,
J. W.
, and
Padowitz
,
D.
, “
Development of Molten Salt Heat Transfer Fluid With Low Melting Point and High Thermal Stability
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031013
.10.1115/1.4004243
14.
Bradshaw
,
R. W.
, and
Siegel
,
N. P.
,
2009
,
Development of Molten Nitrate Salt Mixtures for Concentrating Solar Power Systems
,
SolarPACES
,
Berlin
.
15.
Murgulescu
,
I. G.
, and
Zuca
,
S.
,
1969
, “
Viscosity of Binary Mixtures of Molten Nitrates as a Function of Ionic Radius—II
,”
Electrochim. Acta
,
14
, pp.
519
526
.10.1016/0013-4686(69)87037-4
16.
Franzosini
,
P.
, and
Sinistri
,
C.
,
1963
,
Ric. Sci. Rend. Ser. A
,
3
, pp.
411
.
17.
Douglas
,
T. B.
,
1955
, U.S. Atomic Energy Commission Report, Brookhaven National Laboratory, Report No. BNL-2446.
18.
Takahashi
,
Y.
,
Sakamoto
,
R.
, and
Kamimoto
,
M.
,
1988
, “
Heat Capacities and Latent Heats of LiNO3, NaNO3, and KNO3
,”
Int. J. Thermophys.
,
9
, pp.
1081
1090
.10.1007/BF01133275
19.
Mustajoki
,
A.
,
1957
,
Ann. Acad. Sci. Fenn. Ser. A6
,
5
, pp.
17
.
20.
Goodwin
,
H. M.
, and
Kalmus
,
H. T.
,
1909
, “On the Latent Heat of Fusion and the Specific Heat of Salts in the Solid and Liquid State,”
Phys. Rev.
,
28
, pp. 1–24.10.1103/PhysRevSeriesI.28.1
21.
Janz
,
G. J.
, Kelley, F. J., and Perano, J. L.,
1964
, “Melting and Pre-Melting Phenomena in Alkali Metal Nitrates,”
J. Chem. Eng. Data
,
9
(1), pp.
133
–136.
22.
Clark
,
R. P.
,
1973
, “Heats of Fusion and Heat Capacities of Lithium Chloride-Potassium Chloride Eutectic and Potassium Nitrate,”
J. Chem. Eng. Data
,
18
(1), pp.
67
–70.10.1021/je60056a023
You do not currently have access to this content.