Aeroelastic design and fatigue analysis of large utility-scale wind turbine blades have been performed to investigate the applicability of different types of materials in a fatigue environment. The blade designs used in the study are developed according to an iterative numerical design process for realistic wind turbine blades, and the software tool FAST is used for advanced aero-servo-elastic simulations. Elementary beam theory is used to calculate strain time series from these simulations, and the material fatigue is evaluated using established methods. Following wind turbine design standards, the fatigue evaluation is based on a turbulent wind load case. Fatigue damage is estimated based on 100% availability and a site-specific annual wind distribution. Rainflow cycle counting and Miner's sum for cumulative damage prediction is used together with constant life diagrams tailored to actual material S-N data. Material properties are based on 95% survival probability, 95% confidence level, and additional material safety factors to maintain conservative results. Fatigue performance is first evaluated for a baseline blade design of the 10 MW NOWITECH reference wind turbine. Results show that blade damage is dominated by tensile stresses due to poorer tensile fatigue characteristics of the shell glass fiber material. The interaction between turbulent wind and gravitational fluctuations is demonstrated to greatly influence the damage. The need for relevant S-N data to reliably predict fatigue damage accumulation and to avoid nonconservative conclusions is demonstrated. State-of-art wind turbine blade trends are discussed and different design varieties of the baseline blade are analyzed in a parametric study focusing on fatigue performance and material costs. It is observed that higher performance material is more favorable in the spar-cap construction of large blades which are designed for lower wind speeds.

References

2.
EWEA
,
2012
, “
The European Offshore Wind Industry Key 2011 Trends and Statistics
,” http://www.ewea.org/fileadmin/ewea_documents/documents/publications/statistics/EWEA_stats_offshore_2011_02.pdf
3.
UpWind
, 2011, “
Welcome to Upwind
,” accessed August 31, 2011, http://www.upwind.eu
4.
Bak
,
C.
,
Bitsche
,
R.
,
Yde
,
A.
,
Kim
,
T.
,
Hansen
,
M. H.
,
Zahle
,
F.
,
Gaunaa
,
M.
,
Blasques
,
J.
,
Heinen
,
J. W.
, and
Behrens
,
T.
,
2012
, “
Light Rotor: The 10-MW Reference Wind Turbine
,” Proceedings of the European Wind Energy Association (EWEA) Annual Event,
Copenhagen
, April 16–19.
5.
Griffith
,
D. T.
, and
T. D.
,
Ashwill
,
T. D.
,
2011
, “
The Sandia 100-Meter All-Glass Baseline Wind Turbine Blade: SNL100-00
,”
Sandia National Laboratories
,
Albuquerque, NM
, Paper No. SAND2011–3779.
6.
Frøyd
,
L.
, and
Dahlhaug
,
O. G.
,
2012
, “
Effect of Pitch and Safety System Design on Dimensioning Loads for Offshore Wind Turbines During Grid Fault
,”
Energy Procedia
,
24
, pp.
36
43
.10.1016/j.egypro.2012.06.084
7.
Cox
,
K.
, and
Echtermeyer
,
A.
,
2012
, “
Structural Design and Analysis of a 10 MW Wind Turbine Blade
,”
Energy Procedia
,
24
, pp.
194
201
.10.1016/j.egypro.2012.06.101
8.
Frøyd
,
L.
,
Dahlhaug
,
O. G.
, and
Hansen
,
M. H.
,
2011
, “
Prediction of Flutter Speed on a 10 MW Wind Turbine
,” Proceedings of the European Wind Energy Association (EWEA)
Offshore, Amsterdam, The Netherlands
, November 29–December 1.
9.
Frøyd
,
L.
, and
Dahlhaug
,
O. G.
,
2011
, “
A Conceptual Design Method for Parametric Study of Blades for Offshore Wind Turbines
,”
30th International Conference on Ocean, Offshore and Arctic Engineering
(OMAE2011),
Rotterdam
, June 19–24, Vol.
5
, pp.
609
618
.
10.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
, “
FAST User's Guide
,”
National Renewable Energy Laboratory
, Paper No. NREL/EL-500-38230.
11.
IEC
,
2009
, “
Wind Turbines—Part 3: Design Requirements for Offshore Wind Turbines
,”
International Electrotechnical Commission, Geneva, Switzerland, Design Standard No. IEC 61400-3
, Edition 1.
12.
RECOFF
, 2001, “
Fatigue Load Parametric Studies; Wave Effects and Simulation Length Requirements
,”
RECOFF—Recommendations for Design of Offshore Wind Turbines, Risø National Laboratory, Denmark
, http://www.risoe.dk/vea/recoff/Documents/Sec_3/RECOFFdoc015.pdf
13.
IEC
,
2005
, “
Wind Turbines—Part 1: Design Requirements
,”
International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC61400-1, Edition 3
.
14.
Hansen
,
M. O. L.
,
Aerodynamics of Wind Turbines
, 2nd ed.,
Earthscan Publications
, London.
15.
Laino
,
D. J.
, and
Hansen
,
A. C.
,
2005
, “User's Guide to the Wind Turbine Aerodynamics Computer Software AeroDyn,” NREL, Golden, CO.
16.
Fischer
,
T.
,
de Vries
,
W.
, and
Schmidt
,
B.
,
2010
, “
Upwind Design Basis
,”
Universität Stuttgart, Stuttgart, Germany
, http://www.upwind.eu/pdf/WP4_DesignBasis.pdf
17.
Philippidis
,
T. P.
, and
Vassilopoulos
,
A. P.
,
2002
, “
Complex Stress State Effect on Fatigue Life of GRP Laminates: Part I, Experimental
,”
Int. J. Fatigue
,
24
(
8
), pp.
813
823
.10.1016/S0142-1123(02)00003-8
18.
Philippidis
,
T. P.
, and
Vassilopoulos
,
A. P.
,
2002
, “
Complex Stress State Effect on Fatigue Life of GRP Laminates: Part II, Theoretical Formulation
,”
Int. J. Fatigue
,
24
(
8
), pp.
825
830
.10.1016/S0142-1123(02)00004-X
19.
ASTM
,
2011
, “
Standard Practices for Cycle Counting in Fatigue Analysis
,”
Paper No. E1049-85 e 1
.
20.
Nieslony
,
A.
, 2003, “
Rainflow Counting Algorithm
,” File Exchange-MATLAB Central,
http://
www.mathworks.com/matlabcentral/fileexchange/3026-rainflow-counting-algorithm
21.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
J. Appl. Mech.
,
12
(
3
), pp.
159
164
.
22.
Nijssen
,
R. P. L.
,
2006
, “
Fatigue Life Prediction and Strength Degradation of Wind Turbine Rotor Blade Composites
,”
Ph.D thesis
,
Delft University of Technology
, Delft, The Netherlands.
23.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
,
2001
,
Wind Energy Handbook
,
John Wiley & Sons Ltd., Chichester, UK
.
24.
van Delft
,
D. R. V.
,
de Winkel
,
G. D.
, and
Joosse
,
P. A.
,
1997
, “
Fatigue Behaviour of Fibreglass Wind Turbine Blade Material Under Variable Amplitude Loading
,” AIAA 35th Aerospace Sciences Meeting & Exhibit, Reno, NV, January 6–9,
AIAA
Paper No. 97-0951.10.2514/6.1997-951
25.
Schön
,
J.
, and
Nyman
,
T.
,
2002
, “
Spectrum Fatigue of Composite Bolted Joints
,”
Int. J. Fatigue
,
24
(
2
), pp.
273
279
.10.1016/S0142-1123(01)00082-2
26.
Mandell
,
J. F.
, and
Samborsky
,
D. D.
,
2009
, “
DOE/MSU Composite Material Fatigue Database
,”
Montana State University
, Bozeman, MT, Version 18.1.
27.
Vassilopoulos
,
A. P.
,
Manshadi
,
B. D.
, and
Keller
,
T.
,
2010
, “
Influence of the Constant Life Diagram Formulation on the Fatigue Life Prediction of Composite Materials
,”
Int. J. Fatigue
,
32
(
4
), pp.
659
669
.10.1016/j.ijfatigue.2009.09.008
28.
Samborsky
,
D. D.
,
Wilson
,
T. J.
, and
Mandell
,
J. F.
,
2009
, “
Comparison of Tensile Fatigue Resistance and Constant Life Diagrams for Several Potential Wind Turbine Blade Laminates
,”
ASME J. Sol. Energy Eng.
,
131
, p.
011006
.10.1115/1.3027510
29.
Merz
,
K. O.
,
2011
, “
Conceptual Design of a Stall-Regulated Rotor for a Deepwater Offshore Wind Turbine
,”
Ph.D. thesis
,
NTNU
,
Trondheim
, Norway.
30.
Echtermeyer
,
A. T.
,
1994
, “
Fatigue of Glass Reinforced Composites Described by One Standard Fatigue Lifetime Curve
,” Proceedings of the European Wind Energy Conference, Thessaloniki, Greece, October 10–14, pp.
391
396
.
31.
DNV
,
2010
, “
Design and Manufacture of Wind Turbine Blades, Offshore and Onshore Wind Turbines
,”
Det Norske Veritas, Design Standard No. DNV-DS-J102
.
32.
Griffin
,
D. A.
,
2002
, “
Blade System Design Studies Volume 1: Composite Technologies for Large Wind Turbine Blades
,”
Sandia National Laboratories, Paper No. SAND-1879
.
33.
Peeringa
,
J.
,
Brood
,
R.
,
Ceyhan
,
O.
,
Engels
,
W.
, and
de Winkel
,
G.
,
2011
, “
UpWind 20MW Wind Turbine Pre-Design
,”
ECN, Paper No. ECN-E–11-017
.
34.
GL
,
2010
, “
Guideline for the Certification of Wind Turbines
,” Germanischer Lloyd, Hamburg, Germany.
35.
Wedel-Heinen
,
J.
,
Tadich
,
J. K.
,
Brokopf
,
C.
,
Janssen
,
G. J.
,
van Wingerde
,
A. M.
,
van Delft
,
D. R.
,
Kensche
,
C. W.
,
Philippidis
,
T. P.
,
Brøndsted
,
P.
,
Dutton
,
A. G.
, and
Nijssen
,
R. P. L.
,
2006
, “
Reliable Optimal Use of Materials for Wind Turbine Rotor Blades
,” Energy Research Centre of The Netherlands, Petten, The Netherlands, http://www.wmc.eu/public_docs/10043_001.pdf
36.
Stewart
,
R.
,
2012
, “
Wind Turbine Blade Production—New Products Keep Pace as Scale Increases
,”
Reinforced Plastics
,
56
(
1
), pp.
18
25
.10.1016/S0034-3617(12)70033-4
37.
Gotro
,
J.
,
2011
, “
Polymer Challenges in the Wind Turbine Industry
,” Polymer Innovation, http://polymerinnovationblog.com/polymer-challenges-in-the-wind-turbine-industry-3/
38.
Sloan
,
J.
,
2011
, “
Carbon Fiber Market: Cautious Optimism
,” Composites World, http://www.compositesworld.com/articles/carbon-fiber-market-cautious-optimism
39.
Vestas
, 2011, “
Vestas V164-7.0 MW Offshore Product Brochure
,” accessed, March 20, 2012,
http://
www.vestas.com/en/media/brochures.aspx
40.
Peters
,
L.
,
Adolphs
,
G.
,
Bech
,
J. I.
, and
Brøndsted
,
P.
,
2006
, “
HiPer-Tex WindStrand™: A New Generation of High Performance Reinforcement
,”
Proceedings of the 27th Risø International Symposium on Materials Science
, Roskilde, Denmark, September 4–7.
You do not currently have access to this content.