Solar cells' temperature is a very important parameter that affects performance of photovoltaic (PV) modules since main electrical parameters of PV cells and modules are temperature dependent regardless the technology. The present study evaluates and compares different sensor types and mountings for long term outdoor temperature monitoring of PV modules along with a standardized method for determination of cell's temperature from open-circuit voltage. For that purpose, a special multicrystalline silicon PV module with miniature in situ Pt1000 temperature sensors was used for reference temperature measurement. On the back side of the PV module different temperature sensors were attached, including thermocouple (TC), platinum Pt1000 (PT) and digital temperature sensors DS18B20 (DS). All sensors except one were covered by a 1 cm thick insulation block. The whole setup was mounted on the outdoor PV testing site and all temperatures were monitored for several days with selection of different environmental conditions. On the basis of measurement results, deviations of different temperature sensors are investigated and compared to temperature calculated from open-circuit voltage measurement according to standard EN 60904-5. Among sensors attached at the back side, covered PT and TC sensors deliver the best results in range of 1–2 °C of lower temperature in average; while the covered DS sensor gives additional 1–2 °C underestimated temperature values. The worst measurement results demonstrate the PT sensor without insulation. All temperature sensors exhibit similar and adequate time response regarding the thermal capacitance of the PV module. DS sensors, although showing somewhat worse results, offer great advantages if several temperatures have to be acquired simultaneously and require very simple data acquisition equipment. They feature comparable measurement accuracy than commonly used Pt1000 temperature sensors if they are covered by insulation with 10 mm thick walls in lateral direction to avoid micro-environmental changes.

References

1.
King
,
D. L.
,
Kratochvil
,
J. A.
, and
Boyson
,
W. E.
,
1997
, “
Temperature Coefficients for PV Modules and Arrays: Measurement Methods. Difficulties and Results
,”
Proceedings of 26th IEEE Photovoltaics Specialists Conference
,
Anaheim
, September 29–October 3, pp.
1183
1186
.10.1109/PVSC.1997.654300
2.
Skoplaki
,
E.
, and
Palyvos
,
J. A.
,
2009
, “
On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations
,”
Sol. Energy
,
83
, pp.
614
624
.10.1016/j.solener.2008.10.008
3.
Bliss
,
M.
,
Betts
,
T. R.
, and
Gottschalg
,
R.
,
2010
, “
Indoor Measurement of Photovoltaic Device Characteristics at Varying Irradiance, Temperature and Spectrum for Energy Rating
,”
Meas. Sci. Technol.
,
21
(
11
), pp.
115701
115712
.10.1088/0957-0233/21/11/115701
4.
Fanney
,
A. H.
,
Davis
,
M. W.
,
Dougherty
,
B. P.
,
King
,
D. L.
,
Boyson
,
W. E.
, and
Kratochvil
,
J. A.
,
2006
, “
Comparison of Photovoltaic Module Performance Measurements
,”
ASME J. Sol. Energy
,
128
, pp.
152
159
.10.1115/1.2192559
5.
King
,
D. L.
,
1996
, “
Photovoltaic Module and Array Performance Characterization Methods for All System Operating Conditions
,”
NREL/SNL Program Review
,
ATP Press
, pp.
347
368
.
6.
IEC, International Standard 60904-5
:
1993
,
Photovoltaic Devices—Part 5: Determination of the Equivalent Cell Temperature (ECT) of Photovoltaic (PV) Devices by the Open-Circuit Voltage Method
, 1st ed.,
IEC
,
Geneva
.
7.
Huang
,
B. J.
,
Yang
,
P. E.
,
Lin
,
Y. P.
,
Lin
,
B. Y.
,
Chen
,
J. J.
,
Lai
,
R. C.
, and
Cheng
,
J. S.
,
2011
, “
Solar Cell Junction Temperature Measurement of PV Module
,”
Sol. Energy
,
85
, pp.
388
392
.10.1016/j.solener.2010.11.006
8.
IEC International Standard 60891
:
2009
,
Procedures for Temperature and Irradiance Corrections to Measured I–V Characteristics of Photovoltaic Devices
, 2nd ed.,
IEC
,
Geneva
.
9.
Breteque
,
E. A.
,
2009
, “
Thermal Aspects of c-Si Photovoltaic Module Energy Rating
,”
Sol. Energy
,
83
, pp.
1425
1433
.10.1016/j.solener.2008.10.013
10.
Mattei
,
M.
,
Notton
,
G.
,
Cristofari
,
C.
,
Musselli
,
M.
, and
Poggi
,
P.
,
2006
, “
Calculation of the Polycrystalline PV Module Temperature Using a Simple Method of Energy Balance
,”
Renewable Energy
,
31
, pp.
553
567
.10.1016/j.renene.2005.03.010
11.
Jones
,
A. D.
, and
Underwood
,
C. P.
,
2001
.
A Thermal Model for Photovoltaic Systems
,
Sol. Energy
,
70
(
4
), pp.
349
359
.10.1016/S0038-092X(00)00149-3
12.
Prorok
,
M.
,
Kolodenny
,
W.
,
Zdanowicz
,
T.
,
Gottschalg
,
R.
, and
Stellbogen
,
D.
,
2008
, “
Reducing Uncertainty of PV Module Temperature Determination Based on Analysis Using Data Gained During Outdoor Monitoring
,”
Proc. 23rd European Photovoltaic Solar Energy Conference
,
Valencia, Spain
, September 6–10, pp.
2865
2871
.
13.
Krauter
,
S.
, and
Preiss
,
A.
,
2009
, “
Comparison of Module Temperature Measurement Methods
,” Proceedings of 34th Photovoltaic Specialists Conference (
PVSC
), Philadelphia, PA, June 7–12, pp.
333
338
.10.1109/PVSC.2009.5411669
14.
Eke
,
R.
,
Kavasoglu
,
S.
, and
Kavasoglu
,
N.
,
2012
, “
Design and Implementation of a Low-Cost Multi-Channel Temperature Measurement System for Photovoltaic Modules
,”
Measurement
,
45
(
6
), pp. 1499–1509.10.1016/j.measurement.2012.02.029
15.
Meijer
,
G. C. M.
,
2001
, “
Temperature Sensors and Voltage References Implemented in CMOS Technology
,”
IEEE Sens. J.
,
1
(
3
), pp.
225
234
.10.1109/JSEN.2001.954835
17.
Belmili
,
H.
,
Cheikh
,
S. M. A.
,
Haddadi
,
M.
, and
Larbes
,
C.
,
2010
, “
Design and Development of a Data Acquisition System for Photovoltaic Modules Characterization
,”
Renewable Energy
,
35
, pp.
1484
1492
.10.1016/j.renene.2010.01.007
18.
Bohorquez
,
M. A. M.
,
Gomez
,
J. M. E.
, and
Marquez
,
J. M. A.
,
2009
, “
A New and Inexpensive Temperature-Measuring System: Application to Photovoltaic Solar Facilities
,”
Sol. Energy
,
83
, pp.
883
890
.10.1016/j.solener.2008.12.007
19.
Jankovec
,
M.
,
Brecl
,
K.
,
Kurnik
,
J.
,
Stepan
,
J.
, and
Topič
,
M.
,
2010
, “
Evaluation of Different Temperature Measurement Methods of Crystalline Silicon PV Modules
,”
25th European Photovoltaic Solar Energy Conference/5th World Conference on Photovoltaic Energy Conversion
,
Valencia, Spain
, September 6–10, pp.
4257
4260
.
20.
Granek
,
F.
, and
Zdanowicz
,
T.
,
2004
, “
Advanced System for Calibration and Characterization of Solar Cells
,”
Optoelectron. Rev.
,
12
(
1
), pp.
57
67
.
21.
ISO/IEC
,
2008
,
Guide 98-3, Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995)
, 1st ed.,
ISO/IEC
,
Geneva
.
22.
Kurnik
,
J.
,
Jankovec
,
M.
,
Brecl
,
K.
, and
Topič
,
M.
,
2011
, “
Outdoor Testing of PV Module Temperature and Performance Under Different Mounting and Operational Conditions
,”
Sol. Energy Mater. Sol. Cells
,
95
(
1
), pp.
373
376
.10.1016/j.solmat.2010.04.022
You do not currently have access to this content.