The molten-salt tubular absorber/reformer (MoSTAR) project aims to develop a novel type of “double-walled” tubular absorber/reformer with molten-salt thermal storage at high temperature for use in solar natural-gas reforming and solar air receiver, and to demonstrate its performances on the sun with a 5kWt dish-type solar concentrator. The new concept of double-walled reactor tubes is proposed for use in a solar reformer by Niigata University, Japan, and involves packing a molten/ceramic composite material in the annular region between the internal catalyst tube and the exterior solar absorber wall. This solar tubular absorber concept may be also applied to solar air receiver for solar thermal power generation. The MoSTAR project includes the development of molten-salt thermal storage media, the new design and the fabrication of absorber/reformer with the double-walled absorber tubes, and finally the solar demonstration on the 5kWt dish concentrator of Inha University in Korea. In this paper, thermal storage media of the series of Na2CO3MgO composite materials were tested in a double-walled reformer tube with a thermal storage capacity of about 0.3 kWh. The chemical reaction performances for dry reforming of methane during cooling or heat-discharge mode of the reactor tube were investigated using an electric furnace. The experimental results obtained under feed gas mixture of CH4/CO2=1:3 at a residence time of 0.3 s and at 1 atm showed that the single reactor tube with 90wt%Na2CO3/10wt%MgO composite material successfully maintained a high methane conversion above 90% with about 0.9 kW reforming scale based on high heating value during 45 min of the heat-discharge mode. The chemical reaction performances of the reactor tube were investigated also for the solar-simulating operation mode. The application of the new reactor tubes to solar tubular reformers is expected to help realize stable operation of the solar reforming process under fluctuating insolation during a cloud passage.

1.
Kodama
,
T.
, 2003, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
0360-1285,
29
, pp.
567
597
.
2.
Kodama
,
T.
,
Gokon
,
N.
, 2007, “
Thermochemical Cycles for High-Temperature Solar Hydrogen Production
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
107
, pp.
4048
4077
.
3.
Böhmer
,
M.
,
Langnickel
,
U.
, and
Sanchez
,
M.
, 1991, “
Solar Steam Reforming of Methane
,”
Sol. Energy Mater.
0165-1633,
24
, pp.
441
448
.
4.
Levitan
,
R.
,
Rosin
,
H.
, and
Levy
,
M.
, 1989, “
Chemical Reactions in a Solar Furnace—Direct Heating of the Reactor in a Tubular Receiver
,”
Sol. Energy
0038-092X,
42
(
3
), pp.
267
272
.
5.
Levy
,
M.
, 1993, “
Studies in Closed and Open Loop Solar Chemical Heat Pipes
,”
Proceedings of the Sixth International Symposium on Solar Thermal Concentrating Technology
(Mojacar, Spain, 1992), Ser. Ponencias, Madrid, Vol.
2
, pp.
1003
1011
.
6.
Levy
,
M.
,
Levitan
,
R.
,
Rosin
,
H.
, and
Rubin
,
R.
, 1993, “
Solar Energy Storage Via a Closed-Loop Chemical Heat Pipe
,”
Sol. Energy
0038-092X,
50
(
2
), pp.
179
189
.
7.
Epstein
,
M.
,
Spiewak
,
I.
,
Segal
,
A.
,
Levy
,
I.
,
Lieberman
,
D.
,
Meri
,
M.
, and
Lerner
,
V.
, 1997, “
Solar Experiments With a Tubular Reformer
,”
Proceedings of the Eighth International Symposium on Solar Thermal Concentrating Technology
(Cologne, Germany, 1996),
M.
Becker
and
M.
Bohmer
, eds.,
C. F. Müller
,
Heidelberg
, Vol.
3
, pp.
1209
1229
.
8.
Segal
,
A.
, and
Epstein
,
M.
, 2003, “
Solar Ground Reformer
,”
Sol. Energy
0038-092X,
75
, pp.
479
490
.
9.
Benito
,
R.
,
Duffy
,
G. J.
,
Do
,
K. T.
,
McNaughton
,
R.
,
Edwards
,
J. H.
,
Dave
,
N.
,
Chensee
,
M.
, and
Walters
,
C.
, 2003, “
CSIRO’s Advanced Power Generation Technology Using Solar Thermal—Fossil Energy Hybrid System
,”
Greenhouse Gas Control Technologies
, Vol.
II
,
J.
Gate
and
Y.
Kaya
, eds.,
Elsevier
,
New York
, pp.
1813
1816
.
10.
Wörner
,
A.
, and
Tamme
,
R.
, 1998, “
CO2 Reforming of Methane in a Solar Driven Volumetric Receiver-Reactor
,”
Catal. Today
0920-5861,
46
, pp.
165
174
.
11.
Tamme
,
R.
,
Buck
,
R.
,
Epstein
,
M.
,
Fisher
,
M.
, and
Sugarmen
,
C.
, 2001, “
Solar Upgrading of Fuels for Generation of Electricity
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
160
163
.
12.
Möller
,
S.
,
Kaucic
,
D.
,
Sattler
,
C.
, 2006, “
Hydrogen Production by Solar Reforming of Natural Gas: A Comparison Study of Two Possible Process Configurations
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
16
23
.
13.
Ben-Zvi
,
R.
, and
Karni
,
J.
, 2007, “
Simulation of a Volumetric Solar Reformer
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
, pp.
197
204
.
14.
Dahl
,
J. K.
,
Weimer
,
A. W.
,
Lewandowski
,
A.
,
Bingham
,
C.
,
Bruetsch
,
F.
, and
Steinfeld
,
A.
, 2004, “
Dry Reforming of Methane Using a Solar-Thermal Aerosol Flow Reactor
,”
Ind. Eng. Chem. Res.
0888-5885,
43
, pp.
5489
5495
.
15.
Klein
,
H. H.
,
Karni
,
J.
,
Rubin
,
R.
, 2007, “
Dry Methane Reforming in a Directly Irradiated Solar Particle Reactor Without a Metal Catalyst
,” ASME Paper No. ES2007-36117.
16.
Lovegrove
,
K.
,
Luzzi
,
A.
,
Kreetz
,
H.
, and
Kohlenbach
,
P.
, 2000, “
Dish Based Continuous Solar Thermal Power Using Ammonia
,”
Proceedings of the Tenth SolarPACES International Symposium on Solar Thermal Concentrating Technologies, Solar Thermal 2000
(Sydney, Australia, 2000),
H.
Kreetz
,
K.
Lovegrove
,
A.
Luzzi
, and
W.
Meike
eds.,
The Meeting Manager Pty Ltd
,
Sydney, NSW, Australia
, pp.
59
64
.
17.
Heller
,
P.
,
Pfänder
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Frenandez
,
J.
, and
Ring
,
A.
, 2004, “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
Proceedings of the 12th SolarPACES International Symposium Mexico 2004
(Oaxaca, Oax, Mexico),
C.
Ramos
and
J.
Huacuz
, eds.,
The Electrical Research Institute (IIE)
,
Mexico
.
18.
Stein
,
W.
,
Imenes
,
A.
,
Hinkley
,
J.
,
Benito
,
R.
,
McEvoy
,
S.
,
Hart
,
G.
,
McGregor
,
J.
,
Chensee
,
M.
,
Wong
,
K.
,
Wong
,
J.
, and
Bolling
,
R.
, 2006, “
A New Solar Thermal Facility in Australia
,”
Proceedings of 13th International Symposium on Concentrated Solar Power and Chemical Energy Technologies
, Seville, Spain, Jun. 20.
19.
Stein
,
W.
,
Benito
,
R.
, and
Chensee
,
M.
, 2007, “
Transport and Use of Solar Energy in Hydrogen
,”
Adv. Appl. Ceram.
1743-6753,
106
(
1–2
), pp.
2
5
.
20.
Stein
,
W. -H.
,
Benito
,
R.
,
Sun
,
Y.
,
Edwards
,
J. H.
,
Duffy
,
G. J.
, and
Ritchie
,
T.
, 2008, “
SOLARGAS and Solar Hydrogen—Solarising the Future
,”
Proceedings of the 17th World Hydrogen Energy Conference
, Brisbane, Australia, Jun. 15–19.
21.
Hatamachi
,
T.
,
Kodama
,
T.
,
Isobe
,
I.
,
Nakano
,
D.
, and
Gokon
,
N.
, 2006, “
Double-Walled Reactor Tube With Molten Salt Thermal Storage for Solar Tubular Reformer
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
134
138
.
22.
Gokon
,
N.
,
Nakano
,
D.
,
Inuta
,
S.
, and
Kodama
,
T.
, 2008, “
High-Temperature Carbonate/MgO Composite Materials as Thermal Storage Media for Double-Walled Solar Reformer Tubes
,”
Sol. Energy
0038-092X,
82
, pp.
1145
1153
.
23.
2000, Japan Society of Thermophysical Properties.
24.
Petri
,
R. J.
,
Ong
,
E. T.
, and
Olszewski
,
M.
, 1984, “
High Temperature Composite Thermal Storage Systems
,”
Proceedings of the 19th Intersociety Energy Conversion Engineering Conference
, pp.
1097
1102
.
25.
Petri
,
R. J.
,
Ong
,
E. T.
, and
Martin
,
J.
, 1986, “
High Temperature Composite Thermal Storage (TES) Systems for Industrial Applications
,”
Proceedings of the 21st Intersociety Energy Conversion Engineering Conference
, pp.
873
880
.
26.
Seo
,
J. H.
,
Ma
,
D. S.
,
Kim
,
Y.
,
Seo
,
T.
,
Han
,
G. Y.
,
Lee
,
S. N.
, and
Kang
,
Y. H.
, 2008, “
Thermal Performance of Volumetric Air Receiver Filled With Porous Material for 5 kWt Dish-Type Solar Thermal System in Inha University
,”
Proceedings of the 14th Biennial CSP SolarPACES Symposium
, Las Vegas, NV, March 4–7.
27.
Yamauchi
,
S.
, 1985, “
MALT: Materials-Oriented Little Thermodynamic Data Base for Personal Computers
,”
Netsu Sokutei
0386-2615,
12
(
3
), pp.
142
144
.
You do not currently have access to this content.