Hydrolysis of Zn is investigated as the second step in a ZnOZn redox solar water splitting process. Zinc is evaporated and hydrolyzed with steam in a hot wall flow tubular reactor. The influence of the reactor temperature distribution and residence time on hydrogen conversion was measured for furnace set point temperatures of 1023K and 1073K. The yield of ZnO aerosol was measured in situ using a scanning differential mobility sizer. The composition and morphology of the solid product were characterized with X-ray diffraction and microscopy. Hydrogen conversions of 87–96% at temperatures above zinc saturation are attributed primarily to hydrolysis of zinc(g) at the wall of the reactor at temperatures from 800Kto1077K.

1.
Nakamura
,
T.
, 1977, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
0038-092X,
19
(
5
), pp.
467
475
.
2.
Steinfeld
,
A.
,
Kuhn
,
P.
,
Reller
,
A.
,
Palumbo
,
R.
,
Murry
,
J.
, and
Tamaura
,
Y.
, 1998, “
Solar-Processed Metals as Clean Energy Carriers and Water Splitters
,”
Int. J. Hydrogen Energy
0360-3199,
23
, pp.
767
774
.
3.
Fletcher
,
E. A.
, 2001, “
Solarthermal Processing: A Review
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
63
74
.
4.
Perkins
,
C.
, and
Weimer
,
A. W.
, 2004, “
Likely Near-Term Solar-Thermal Water Splitting Technologies
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
1587
1599
.
5.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
0038-092X,
78
, pp.
603
615
.
6.
Abanades
,
S.
,
Charvin
,
P.
,
Flamant
,
G.
, and
Neveu
,
P.
, 2006, “
Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,”
Energy
0360-5442,
31
, pp.
2805
2822
.
7.
Palumbo
,
R.
,
Lédé
,
J.
,
Boutin
,
O.
,
Elorza
,
Ricart E.
,
Steinfeld
,
A.
,
Moeller
,
S.
,
Weidenkaff
,
A.
,
Fletcher
,
E. A.
, and
Bielicki
,
J.
, 1998, “
The Production of Zn From ZnO in a Single Step High Temperature Solar Decomposition Process
,”
Chem. Eng. Sci.
0009-2509,
53
, pp.
2503
2518
.
8.
Haueter
,
P.
,
Moeller
,
S.
,
Palumbo
,
R.
, and
Steinfeld
,
A.
, 1999, “
The Production of Zinc by Thermal Dissociation of Zinc Oxide—Solar Chemical Reactor Design
,”
Sol. Energy
0038-092X,
67
, pp.
161
167
.
9.
Moeller
,
S.
, and
Palumbo
,
R.
, 2001, “
Solar Thermal Decomposition Kinetics of ZnO in the Temperature Range 1950–2400K
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
4505
4515
.
10.
Schunk
,
L. O.
,
Haeberling
,
P.
,
Wepf
,
S.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
, 2007, “
A Rotary Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide
,”
Proceedings of the ASME Energy Sustainability Conference
,
Long Beach, CA
, Jun. 27–30, Paper No. 36078.
11.
Perkins
,
C.
,
Lichty
,
P.
, and
Weimer
,
A. W.
, 2007, “
Determination of Aerosol Kinetics of Thermal ZnO Dissociation by Thermogravimetry
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
5952
5962
.
12.
Steinfeld
,
A.
, 2002, “
Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn∕ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
0360-3199,
27
, pp.
611
619
.
13.
Elorza-Ricart
,
E.
,
Martin
,
P. Y.
,
Ferrer
,
M.
, and
Lédé
,
J.
, 1999, “
Direct Thermal Splitting of ZnO Followed by a Quench. Experimental Measurements of Mass Balances
,”
J. Phys. IV
1155-4339,
9
, pp.
325
330
.
14.
Weidenkaff
,
A.
,
Reller
,
A.
,
Sibieude
,
F.
,
Wokaun
,
A.
, and
Steinfeld
,
A.
, 2000, “
Experimental Investigations on the Crystallization of Zinc by Direct Irradiation of Zinc Oxide in a Solar Furnace
,”
Chem. Mater.
0897-4756,
12
, pp.
2175
2181
.
15.
Ernst
,
F. O.
, 2007, “
Co-Synthesis of H2 and Nanocrystalline ZnO Particles by Zn Aerosol Formation and In Situ Hydrolysis
,” Ph.D. thesis No. 17272, ETH-Zurich, Zurich.
16.
Vishnevetsky
,
I.
, and
Epstein
,
M.
, 2007, “
Production of Hydrogen From Solar Zinc in Steam Atmosphere
,”
Int. J. Hydrogen Energy
0360-3199,
32
(
14
), pp.
2791
2802
.
17.
Berman
,
A.
, and
Epstein
,
M.
, 2000, “
The Kinetics of Hydrogen Production in the Oxidation of Liquid Zinc With Water Vapor
,”
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
957
967
.
18.
Weidenkaff
,
A.
,
Reller
,
A. W.
,
Wokaun
,
A.
, and
Steinfeld
,
A.
, 2000, “
Thermogravimetric Analysis of the ZnO∕Zn Water Splitting Cycle
,”
Thermochim. Acta
0040-6031,
359
, pp.
69
75
.
19.
Wagner
,
C.
, and
Grunewald
,
K.
, 1936, “
Beitrag zur Theorie des Anlaufvorgangs
,”
Z. Phys. Chem. Abt. B
0372-9664,
40
(
6
), pp.
455
475
.
20.
Park
,
K.
,
Lee
,
D.
,
Rai
,
A.
,
Mukherjee
,
D.
, and
Zachariah
,
M. R.
, 2005, “
Size Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation With Single Particle Mass Spectrometry
,”
J. Phys. Chem. B
1089-5647,
109
(
15
), pp.
7290
7299
.
21.
Rai
,
A.
,
Lee
,
D.
,
Park
,
K. J.
, and
Zachariah
,
M. R.
, 2004, “
Importance of Phase Change of Aluminum in Oxidation of Aluminum Nanoparticles
,”
J. Phys. Chem. B
1089-5647,
108
(
39
), pp.
14793
14795
.
22.
Rai
,
A.
, and
Zachariah
,
M. R.
, 2006, “
Understanding the Mechanism of Aluminum Nanoparticle Oxidation
,”
Combust. Theory Modell.
1364-7830,
10
(
5
), pp.
843
859
.
23.
Weiss
,
R. J.
,
Ly
,
H. C.
,
Wegner
,
K.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
, 2005, “
H2 Production by Zn Hydrolysis in Hot-Wall Aerosol Reactor
,”
AIChE J.
0001-1541,
51
, pp.
1966
1970
.
24.
Wegner
,
A. K.
,
Ly
,
H. C.
,
Weiss
,
R. J.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
, 2006, “
In Situ Formation and Hydrolysis of Zn Nanoparticles for H2 Production by the 2-Step ZnO∕Zn Water-Splitting Thermochemical Cycle
,”
Int. J. Hydrogen Energy
0360-3199,
31
pp.
55
61
25.
Ernst
,
F. O.
,
Tricoli
,
A.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
, 2006, “
Co-Synthesis of H2 and ZnO by In Situ Zn Aerosol Formation and Hydrolysis
,”
AIChE J.
0001-1541,
52
(
9
), pp.
3297
3303
.
26.
Wang
,
S. C.
, and
Flagen
,
R. C.
, 1990, “
Scanning Electrical Mobility Spectrometer
,”
Aerosol Sci. Technol.
0278-6826,
13
, pp.
230
240
.
27.
Yaws
,
C. L.
, 1999,
Chemical Properties Handbook
,
McGraw-Hill
,
New York
.
28.
Clarke
,
J. A.
, and
Fray
,
D. J.
, 1979, “
Oxidation of Zinc Vapour by Hydrogen-Water Vapor Mixtures
,”
Trans. Inst. Min. Metall., Sect. C
0371-9553,
88
, pp.
161
166
.
You do not currently have access to this content.