An experimental study of the growth of scale on copper, nylon 6,6, semiaromatic high temperature nylon, polypropylene, polybutylene, and Teflon tubes exposed to hard water is presented. Results provide qualitative information on the scaling of polymer tubes in nonisothermal, flowing conditions expected in heat exchangers and solar absorbers. The 89-cm-long tubes were placed in tube-in-shell heat exchangers. The tubes were exposed to flowing water for 1660 h, a 1120-h pretreatment phase using tap water adjusted to supersaturation of about 2 and pH of 8, followed by a 540-h acceleration phase using tap water with an adjusted total calcium concentration of 4×103M, and a pH of 9. Flow rate was 4 cm/s. A 50% propylene glycol solution at 60°C was maintained on the shell side of the heat exchanger. Sections of the tubes were removed periodically to determine the extent of scaling. Results include scanning electron microscope images of the tube surfaces before and after exposure to the flowing water, x-ray diffraction to determine the crystalline phase content of the observed deposits, and chemical analysis to estimate the mass of calcium carbonate per unit surface area. A model of the scaling process is presented to help interpret the data. The data show conclusively that polymer tubes are prone to scaling. With the exception of nylon 6,6, the scaling rate on the polymers is about the same as that on copper. The nylon 6,6 substrate appears to enhance scaling. The enhancement is attributed to hydrolysis of the substrate.

1.
Burch, J., Egrican, N., and Carlisle, N. 1990, “Calcium Carbonate Scaling in Solar Domestic Hot Water Systems,” Proceedings of the 1990 Annual Conference, Austin, TX, American Solar Energy Society, pp. 262–266.
2.
Baker, D. K., 1996, Development of Software to Predict Calcium Carbonate Scaling in Solar Domestic Hot Water Systems, Masters thesis, Department of Mechanical Engineering. University of Texas at Austin.
3.
Baker, D. K., 2000, An Investigation of Calcium Carbonate Scaling Rates Based on Experiments and Modeling, Ph.D. dissertation, Department of Mechanical Engineering, University of Texas at Austin.
4.
Baker
,
D. K.
, and
Vliet
,
G. C.
,
2001
, “
Designing Solar Hot Water Systems for Scaling Environments
,”
ASME J. Sol. Energy Eng.
,
123
, pp.
43
47
.
5.
Baker
,
D. K
, and
Vliet
,
G. C.
,
2003
, “
Identifying and Reducing Scaling Problems in Solar Hot Water Systems
,”
ASME J. Sol. Energy Eng.
,
125
, pp.
61
66
.
6.
Branch
,
C. A.
, and
Muller-Steinhagen
,
H. M.
,
1991
, “
Influence of Scaling on the Performance of Shell-and-Tube Heat Exchangers
,”
Heat Transfer Eng.
,
12
, pp.
37
45
.
7.
Budair
,
M. O.
,
Khan
,
M. S.
,
Zubair
,
S. M.
,
Sheikh
,
A. K.
, and
Quddus
,
A.
,
1998
, “
CaCO3 Scaling in AISI 316 Stainless Steel Tubes-Effect of Thermal and Hydraulic Parameters on the Induction Time and Growth Rate
,”
Heat Mass Transfer
,
34
, pp.
163
170
.
8.
Khan
,
M. S.
,
Zubair
,
S.
,
Budair
,
M. O.
,
Sheikh
,
A. K.
, and
Quddus
,
A.
,
1996
, “
Fouling Resistance Model for Prediction of CaCO3 Scaling in AISI 316 Tubes
,”
Heat Mass Transfer
,
32
, pp.
73
79
.
9.
Githens
,
R. E.
,
Minor
,
W. R.
, and
Tomsic
,
V. J.
,
1965
, “
Flexible Tube Heat Exchangers
,”
Chem. Eng. Prog.
,
61
(
7
), pp.
55
62
.
10.
Andritsos
,
N.
,
Karabelas
,
A. J.
, and
Koutsoukis
,
P. G.
,
1997
, “
Morphology and Structure of CaCO3 Scale Layers Formed under Isothermal Flow Conditions
,”
Langmuir
,
13
, pp.
2873
2879
.
11.
Davidson, J. H., S. C., Mantell, and Jorgensen, G., 2002, “Status of the Development of Polymeric Solar Water Heating Systems,” Advances in Solar Energy, American Solar Energy Society, 15, pp. 149–186. ISBN 0-89553-258-1
12.
Arora
,
S.
,
Davidson
,
J. H.
,
Burch
,
J.
, and
Mantell
,
S. C.
,
2001
, “
The Thermal Penalty of an Immersed Heat Exchanger in Integral Collector Storage Systems
,”
ASME J. Sol. Energy Eng.
,
122
, pp.
84
91
.
13.
Bourne, D., Lee, E., Callaway, D., and Plaisted, J., 2003, “Design and Development of a Low Cost ICS Solar Water Heater,” Solar 2003, Proceedings, 32nd American Solar Energy Society Annual Conference, Austin, TX, American Solar Energy Society, CDROM.
14.
Liu
,
W.
,
Davidson
,
J. H.
, and
Kulacki
,
F. A.
,
2004
, “
Natural Convection from a Tube Bundle in a Thin Inclined Enclosure
,”
ASME J. Sol. Energy Eng.
,
126
(
2
), pp.
702
709
.
15.
Liu, W., Davidson, J. H., and Kulacki, F. A., 2004, “Natural Convection from a Tube Bundle in a Thin Inclined Enclosure,” J. Solar Eng., 126(1), (in press).
16.
Snoeyink, V. L., and Jenkins, 1980, Water Chemistry, John Wiley & Sons New York.
17.
W., Stumm, and Morgan, J. J., 1996, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, John Wiley & Sons, New York.
18.
Roques
,
H.
, and
Girou
,
A.
,
1974
, “
Kinetics of the Formation Conditions of Carbonate Tartars
,”
Water Res.
,
8
, pp.
907
920
.
19.
Keysar
,
S.
,
Semiat
,
R.
,
Hasson
,
D.
, and
Yahalom
,
J.
,
1994
, “
The Effect of Surface Roughness on the Morphology of Calcite Crystallizing on Mild Steel
,”
J. Colloid Interface Sci.
,
162
, pp.
311
319
.
20.
Mann
,
S.
,
Heywood
,
B. R.
,
Rajam
,
S.
, and
Birchall
,
J. D.
,
1988
, “
Controlled Crystallization of CaCO3 Under Steric Acid Monolayers
,”
Nature (London)
,
334
, pp.
692
695
.
21.
Aizenberg
,
J.
,
Black
,
A. J.
, and
Whitesides
,
G. M.
,
1999
, “
Oriented Growth of Calcite Controlled by Self-Assembled Monolayers on Functionalized Alkanethiols Supported on Gold and Silver
,”
J. Am. Chem. Soc.
,
121
, pp.
4500
4509
.
22.
Koutsoukos
,
P. G.
, and
Kontoyannis
,
C. G.
,
1984
, “
Prevention and Inhibition of Calcium Carbonate Scale
,”
J. Cryst. Growth
,
69
, pp.
367
376
.
23.
Andritsos
,
N.
,
Kontopoulou
,
M.
,
Karabelas
,
A. J.
, and
Koutsoukos
,
P. G.
,
1996
, “
Calcium Carbonate Deposit Formation under Isothermal Conditions
,”
Can. J. Chem. Eng.
,
74
, pp.
911
919
.
24.
Francis, L., Davidson, J. H., Weathers, R., and Kinglsey, M., 2003, “The Potential for Scaling in Polymer Tubes,” SOLAR 2003, Proceedings of the 32nd ASES Annual Conference, American Solar Energy Society, pp. 83–88.
25.
Dalas
,
E.
,
Kallitsis
,
J.
, and
Koutsoukos
,
P. G.
,
1988
, “
The Crystallization of Calcium Carbonate on Polymeric Substrates
,”
J. Cryst. Growth
,
89
, pp.
287
294
.
26.
Dalas
,
E.
,
Klepetsanis
,
P.
, and
Koutsoukos
,
P. G.
,
1999
, “
The Overgrowth of Calcium Carbonate on Polyvinyl Chloride-co-Vinyl Acetate-co-Maleic Acid
,”
Langmuir
,
15
, pp.
8322
8327
.
27.
Dalas
,
E.
,
Klepetsanis
,
P. G.
, and
Koutsoukos
,
P. G.
,
2000
, “
Calcium Carbonate Deposition on Cellulose
,”
J. Colloid Interface Sci.
,
224
, pp.
56
62
.
28.
Van Krevelen, D. W., and Hoftyzer, P. J., 1976, Properties of Polymers: Their Estimation and Correlation with Chemical Structure, Elsevier Scientific New York.
29.
Ertl, G., Kno¨zinger, H., and Weitkamp, J. Handbook of Heterogeneous Catalysis, Wiley, New York, 1997.
30.
DuPont, http://plastics.dupont.com
31.
The Polybutylene Piping Systems Association, http://www.pbpsa.com
32.
Goodfellow, http://www.goodfellow.com
33.
Incropera, F. P., and DeWitt, D. P., Fundamentals of Heat and Mass Transfer, 4th ed., John Wiley & Sons, New York, p. 444.
34.
Wang, Y., Calcium Carbonate Scaling on Polymeric Surfaces in Flowing and Stagnant Conditions, M.S. thesis, Department of Chemical Engineering and Materials Science, University of Minnesota, 2004.
35.
American Water Works Association, 1996, Water:/Stats. The Water Utilities Data Base. see http://www.awwa.org.
36.
NIST, Critical Stability Constants of Metal Complexes Database, 1996, National Institute of Standards and Technology (NIST Standard Reference Database 46), version 3.0.
37.
Vergelati
,
C.
,
Imberty
,
A.
, and
Perez
,
S.
,
1993
, “
Water Induced Crystalline Transition of Polyamide 6,6: A Combined X-ray and Molecular Modeling Approach
,”
Macromolecules
,
26
, pp.
4420
4425
.
38.
Cussler, E. L., 1997, Diffusion: Mass Transfer in Fluid Systems, 2nd ed., Cambridge University Press, Cambridge. pp. 226–227.
39.
Sohnel
,
O.
, and
Mullin
,
J. W.
,
1982
, “
Precipitation of Calcium Carbonate
,”
J. Cryst. Growth
,
60
, pp.
239
250
.
40.
Giannimaras
,
E. K.
, and
Koutsoukos
,
P. G.
,
1986
, “
The Crystallization of Calcite in the Presence of Orthophosphate
,”
J. Colloid Interface Sci.
,
116
(
2
), pp.
423
430
.
41.
Dalas
,
E.
, and
Koutsoukos
,
P. G.
,
1989
, “
Calcium Carbonate Scale Formation on Heated Metal Surfaces
,”
Geothermics
,
18
(
1/2
), pp.
83
88
.
42.
Xyla
,
A. G.
, and
Koutsoukos
,
P. G.
,
1987
, “
Effect of Diphosphonates on the Precipitation of Calcium Carbonate in Aqueous Solutions
,”
J. Chem. Soc., Faraday Trans. 1
,
83
, pp.
1477
1484
.
43.
Katz
,
J. L.
,
Reick
,
M. R.
,
Herzog
,
R. E.
, and
Parsiegla
,
K. I.
,
1993
, “
Calcite Growth Inhibition by Iron
,”
Langmuir
,
9
, pp.
1423
1430
.
44.
Parsiegla
,
K. I.
, and
Katz
,
J. L.
,
1999
, “
Calcite Growth Inhibition by Copper(II) I. Effect of Supersaturation
,”
J. Cryst. Growth
,
200
, pp.
213
226
.
45.
Parsiegla
,
K. I.
, and
Katz
,
J. L.
,
2000
, “
Calcite Growth Inhibition by Copper (II) II. Effect of Solution Composition
,”
J. Cryst. Growth
,
213
, pp.
368
380
.
You do not currently have access to this content.