Thermal Integral Micro-Generation (TIMGen) systems on the scale of a few Watts are proposed for use with solar or fuel-derived heat. The optics, the thermal receiver, and several alternative generation technologies, including MEMS heat engines (Stirling and Brayton cycles), thermal photovoltaics, and thermoelectric, are discussed. Analysis of system performance shows the potential for efficiency comparable to photovoltaic cells and large-scale thermal plants. A major advantage of thermal systems over PV cells is the possibility of hybrid operation, both with sunlight and with another heat source when sunlight is not available. The alternative heat source can be another renewable or conventional fossil fuel. TIMGen plants compared to large-scale centralized thermal plants offer the advantages of modularity, scalability, redundancy and low cost via mass production. They can prove to be a very attractive option both for remote, self-contained electricity generation, and as an alternative to large-scale centralized plants.

1.
Winter, C.J., Sizmann, R.L., and Vant-Hull, L.L., 1991, Solar Power Plants, Springer-Verlag, Berlin.
2.
Becker, M., and Klimas, P.C., 1993, Second Generation Central Receiver Technologies, Verlag C. F. Mu¨ller, Karlsruhe.
3.
Majumdar
,
A.
, and
Tien
,
C.L.
,
1998
, “
Micro Power Devices
,”
Microscale Thermophys. Eng.
,
2
, pp.
67
69
.
4.
Feuermann
,
D.
, and
Gordon
,
J.M.
,
1998
, “
Solar Fiber-Optic Mini-Dishes: A New Approach to the Efficient Collection of Sunlight
,”
Sol. Energy
,
65
, pp.
159
170
.
5.
Cariou
,
J.M.
,
Dugas
,
J.
, and
Martin
,
L.
,
1982
, “
Transport of Solar Energy with Optical Fibers
,”
Sol. Energy
,
29
, pp.
397
406
.
6.
Kribus
,
A.
,
Zik
,
O.
, and
Karni
,
J.
,
2000
, “
Optical Fibers and Solar Power Generation
,”
Sol. Energy
,
68
, pp.
405
416
.
7.
Zik
,
O.
,
Karni
,
J.
, and
Kribus
,
A.
,
2000
, “
The TROF (Tower Reflector Optical Fibers) Cncept: A New Degree of Freedom for Solar Energy Systems
,”
Sol. Energy
,
67
, pp.
13
22
.
8.
Epstein, A.H., Senturia, S.D., Al-Midani, O., Anathasuresh, G., Ayon, A., Breuer, K., Chen, K.S., Ehrich, F.F. et al., 1997, “Micro Heat Engines, Gas Turbines, and Rocket Engines–The MIT Microengine Project,” 28 AIAA Fluid Dynamics Conf., AIAA 97-1773.
9.
Karni
,
J.
,
Kribus
,
A.
,
Ostraich
,
B.
, and
Kochavi
,
E.
,
1998
, “
A High-Pressure Window for Volumetric Solar Receivers
,”
ASME J. Sol. Energy Eng.
,
120
, pp.
101
107
.
10.
Liebfried
,
U.
, and
Ortjohann
,
J.
,
1995
, “
Convective Heat Loss from Upward and Downward-Facing Cavity Solar Receivers: Measurements and Calculations
,”
ASME J. Sol. Energy Eng.
,
117
, pp.
75
84
.
11.
Nakajima
,
N.
,
Ogawa
,
K.
, and
Fujimasa
,
I.
,
1989
, “
Study on Microengines: Miniaturizing Stirling Engines for Actuators
,”
Sens. Actuators
,
20
, pp.
75
82
.
12.
Peterson
,
R.B.
,
1998
, “
Size Limits for Regenerative Heat Engines
,”
Microscale Thermophys. Eng.
,
2
, pp.
121
131
.
13.
West, C.D., 1986, Principle and Applications of Stirling Engines, Van Nostrand Reinhold, New York.
14.
Walker, G., Fauvel, O.W., Reader, G., and Bingham, E.R., 1994, The Stirling Alternative, Gordon and Breach, Yverdon, Switzerland.
15.
Stone
,
K.W.
,
Lopez
,
C.W.
, and
Mcalister
,
R.E.
,
1995
, “
Economic Performance of the SCE Stirling Dish
,”
ASME J. Sol. Energy Eng.
,
117
, pp.
210
214
.
16.
Bowman, L., Berchowitz, D.M., and Urieli, I., 1995, Microminiature Stirling Cycle Cryocoolers and Engines, U.S. Patent 5,457,956.
17.
Peterson
,
R.B.
,
1999
, “
Numerical Modeling of Conduction Effects in Microscale Counterflow Heat Exchangers
,”
Microscale Thermophys. Eng.
,
3
, pp.
17
30
.
18.
Adair, R.P., Qvale, E.B., and Pearson, J.T., 1972, “Instantaneous Heat Transfer to Cylinder wall in Reciprocating Compressors,” Purdue Compressor Technology Conf., Lafayette, Purdue Research Foundation, pp. 521–526.
19.
Chen
,
K.
, and
Karim
,
G.A.
,
1998
, “
Evaluation of the Instantaneous Unsteady Heat Transfer in a Rapid Compression-Expansion Machine
,”
Proc. Inst. Mech. Eng.
,
212
, pp.
351
362
.
20.
Kribus
,
A.
,
Zaibel
,
Z.
,
Segal
,
A.
,
Carey
,
D.
, and
Karni
,
J.
,
1998
, “
A Solar-Driven Combined Cycle Plant
,”
Sol. Energy
,
62
, pp.
121
129
.
21.
Romero, M., Marcos, M.J., Baonzas, F., and Fernandez, V., 1999, “Distributed Power from Solar Tower Systems: A MIUS Approach,” ISES 1999 Solar World Congress, Jerusalem, 1, pp. 286–295.
22.
Buck, R., Heller, P., and Koch, H., 1996, “Receiver Development for a Dish-Brayton System,” ASME Int. Solar Energy Conf., pp. 9–96.
23.
Omer
,
S.A.
, and
Infield
,
D.G.
,
2000
, “
Design and Thermal Analysis of a Two Stage Solar Concentrator for Combined Heat and Thermoelectric Power Generation
,”
Energy Convers. Manage.
,
41
, pp.
737
756
.
24.
Disalvo
,
F.J.
,
1999
, “
Thermoelectric Cooling and Power Generation
,”
Science
,
285
, pp.
703
706
.
25.
Dresselhaus
,
M.S.
,
Dresselhaus
,
G.
,
Sun
,
X.
,
Zhang
,
Z.
,
Cronin
,
S.B.
, and
Koga
,
T.
,
1999
, “
The Promise of Low-Dimensional Thermoelectric Materials
,”
Microscale Thermophys. Eng.
,
3
, pp.
89
100
.
26.
Helmers
,
L.
,
Mu¨ller
,
E.
,
Schilz
,
J.
, and
Kaysser
,
W.A.
,
1998
, “
Graded and Stacked Thermoelectric Generators–Numerical Description and Maximisation of Output Power
,”
Mater. Sci. Eng., B
,
56
, pp.
60
68
.
27.
Naito
,
H.
,
Kohsaka
,
Y.
,
Cooke
,
D.
, and
Arashi
,
A.
,
1996
, “
Development of a Solar Receiver for a High-Efficiency Thermionic/Thermoelectric Conversion System
,”
Sol. Energy
,
58
, pp.
191
195
.
28.
Coutts
,
T.J.
,
2001
, “
An Overview of Thermophotovoltaic Generation of Electricity
,”
Sol. Energy Mater. Sol. Cells
,
66
, pp.
443
452
.
29.
Schubnell
,
M.
,
Benz
,
P.
, and
Mayor
,
J.C.
,
1998
, “
Design of a Thermophotovoltaic Residential Heating System
,”
Sol. Energy Mater. Sol. Cells
,
52, pp.
1
9
.
You do not currently have access to this content.