Abstract

This work presents a data-driven methodology for multi-objective optimization under uncertainty of process parameters in the fused filament fabrication (FFF) process. The proposed approach optimizes the process parameters with the objectives of minimizing the geometric inaccuracy and maximizing the filament bond quality of the manufactured part. First, experiments are conducted to collect data pertaining to the part quality. Then, Bayesian neural network (BNN) models are constructed to predict the geometric inaccuracy and bond quality as functions of the process parameters. The BNN model captures the model uncertainty caused by the lack of knowledge about model parameters (neuron weights) and the input variability due to the intrinsic randomness in the input parameters. Using the stochastic predictions from these models, different robustness-based design optimization formulations are investigated, wherein process parameters such as nozzle temperature, nozzle speed, and layer thickness are optimized under uncertainty for different multi-objective scenarios. Epistemic uncertainty in the prediction model and the aleatory uncertainty in the input is considered in the optimization. Finally, Pareto surfaces are constructed to estimate the tradeoffs between the objectives. Both the BNN models and the effectiveness of the proposed optimization methodology are validated using the actual manufacturing of the parts.

References

1.
ASTM,
2015
, “
Additive Manufacturing—General Principles—Terminology
,” ASTM International, West Conshohocken, PA, Standard No. ISO/ASTM 52900:2015.
2.
Kapusuzoglu
,
B.
, and
Mahadevan
,
S.
,
2020
, “
Physics-Informed and Hybrid Machine Learning in Additive Manufacturing: Application to Fused Filament Fabrication
,”
JOM
,
72
(
12
), pp.
4695
4705
.10.1007/s11837-020-04438-4
3.
Debroy
,
T.
,
Zhang
,
W.
,
Turner
,
J.
, and
Babu
,
S. S.
,
2017
, “
Building Digital Twins of 3D Printing Machines
,”
Scr. Mater.
,
135
, pp.
119
124
.10.1016/j.scriptamat.2016.12.005
4.
Megahed
,
M.
,
Mindt
,
H.-W.
,
N'Dri
,
N.
,
Duan
,
H.
, and
Desmaison
,
O.
,
2016
, “
Metal Additive-Manufacturing Process and Residual Stress Modeling
,”
Integr. Mater. Manuf. Innovation
,
5
(
1
), pp.
61
93
.10.1186/s40192-016-0047-2
5.
Baumann
,
F. W.
,
Sekulla
,
A.
,
Hassler
,
M.
,
Himpel
,
B.
, and
Pfeil
,
M.
,
2018
, “
Trends of Machine Learning in Additive Manufacturing
,”
Int. J. Rapid Manuf.
,
7
(
4
), pp.
310
336
.10.1504/IJRAPIDM.2018.095788
6.
Kwon
,
O.
,
Kim
,
H. G.
,
Kim
,
W.
,
Kim
,
G.-H.
, and
Kim
,
K.
,
2020
, “
A Convolutional Neural Network for Prediction of Laser Power Using Melt-Pool Images in Laser Powder Bed Fusion
,”
IEEE Access
,
8
, pp.
23255
23263
.10.1109/ACCESS.2020.2970026
7.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manufact. Syst.
,
47
, pp.
69
82
.10.1016/j.jmsy.2018.04.001
8.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
,
van Duin
,
S.
, and
Larkin
,
N.
,
2016
, “
Bead Modelling and Implementation of Adaptive MAT Path in Wire and Arc Additive Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
39
, pp.
32
42
.10.1016/j.rcim.2015.12.004
9.
Mehrpouya
,
M.
,
Gisario
,
A.
,
Rahimzadeh
,
A.
,
Nematollahi
,
M.
,
Baghbaderani
,
K. S.
, and
Elahinia
,
M.
,
2019
, “
A Prediction Model for Finding the Optimal Laser Parameters in Additive Manufacturing of NiTi Shape Memory Alloy
,”
Int. J. Adv. Manuf. Technol.
,
105
(
11
), pp.
4691
4699
.10.1007/s00170-019-04596-z
10.
Ye
,
D.
,
Fuh
,
J. Y. H.
,
Zhang
,
Y.
,
Hong
,
G. S.
, and
Zhu
,
K.
,
2018
, “
In Situ Monitoring of Selective Laser Melting Using Plume and Spatter Signatures by Deep Belief Networks
,”
ISA Trans.
,
81
, pp.
96
104
.10.1016/j.isatra.2018.07.021
11.
Gaikwad
,
A.
,
Imani
,
F.
,
Yang
,
H.
,
Reutzel
,
E.
, and
Rao
,
P.
,
2019
, “
In Situ Monitoring of Thin-Wall Build Quality in Laser Powder Bed Fusion Using Deep Learning
,” Smart and Sustainable Manufacturing Systems,
3
(
1
), epub.
12.
Nath
,
P.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2019
, “
Uncertainty Quantification of Grain Morphology in Laser Direct Metal Deposition
,”
Modell. Simul. Mater. Sci. Eng.
,
27
(
4
), p.
044003
.10.1088/1361-651X/ab1676
13.
Kapusuzoglu
,
B.
,
Sato
,
M.
,
Mahadevan
,
S.
, and
Witherell
,
P.
,
2021
, “
Process Optimization Under Uncertainty for Improving the Bond Quality of Polymer Filaments in Fused Filament Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
143
(
2
), pp.
1
46
.10.1115/1.4048073
14.
Kapusuzoglu
,
B.
, and
Mahadevan
,
S.
,
2021
, “
Information Fusion and Machine Learning for Sensitivity Analysis Using Physics Knowledge and Experimental Data
,”
Reliab. Eng. Syst. Saf.
,
214
, p.
107712
.10.1016/j.ress.2021.107712
15.
Nath
,
P.
,
Olson
,
J. D.
,
Mahadevan
,
S.
, and
Lee
,
Y.-T. T.
,
2020
, “
Optimization of Fused Filament Fabrication Process Parameters Under Uncertainty to Maximize Part Geometry Accuracy
,”
Addit. Manuf.
,
35
, p.
101331
.10.1016/j.addma.2020.101331
16.
Mahmoudi
,
M.
,
Tapia
,
G.
,
Karayagiz
,
K.
,
Franco
,
B.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Multivariate Calibration and Experimental Validation of a 3D Finite Element Thermal Model for Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Integr. Mater. Manuf. Innovation
,
7
(
3
), pp.
116
135
.10.1007/s40192-018-0113-z
17.
Wang
,
Z.
,
Liu
,
P.
,
Xiao
,
Y.
,
Cui
,
X.
,
Hu
,
Z.
, and
Chen
,
L.
,
2019
, “
A Data-Driven Approach for Process Optimization of Metallic Additive Manufacturing Under Uncertainty
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p. 081004.10.1115/1.4043798
18.
Levine
,
L.
,
Lane
,
B.
,
Heigel
,
J.
,
Migler
,
K.
,
Stoudt
,
M.
,
Phan
,
T.
,
Ricker
,
R.
,
Strantza
,
M.
,
Hill
,
M.
,
Zhang
,
F.
,
Seppala
,
J.
,
Garboczi
,
E.
,
Bain
,
E.
,
Cole
,
D.
,
Allen
,
A.
,
Fox
,
J.
, and
Campbell
,
C.
,
2020
, “
Outcomes and Conclusions From the 2018 AM-Bench Measurements, Challenge Problems, Modeling Submissions, and Conference
,”
Integr. Mater. Manuf. Innovation
,
9
(
1
), pp.
1
15
.10.1007/s40192-019-00164-1
19.
Lane
,
B.
,
Heigel
,
J.
,
Ricker
,
R.
,
Zhirnov
,
I.
,
Khromschenko
,
V.
,
Weaver
,
J.
,
Phan
,
T.
,
Stoudt
,
M.
,
Mekhontsev
,
S.
, and
Levine
,
L.
,
2020
, “
Measurements of Melt Pool Geometry and Cooling Rates of Individual Laser Traces on IN625 Bare Plates
,”
Integr. Mater. Manuf. Innovation
,
9
(
1
), pp.
16
30
.10.1007/s40192-020-00169-1
20.
Cole
,
D. P.
,
Gardea
,
F.
,
Henry
,
T. C.
,
Seppala
,
J. E.
,
Garboczi
,
E. J.
,
Migler
,
K. D.
,
Shumeyko
,
C. M.
,
Westrich
,
J. R.
,
Orski
,
S. V.
, and
Gair
,
J. L.
,
2020
, “
AMB2018-03: Benchmark Physical Property Measurements for Material Extrusion Additive Manufacturing of Polycarbonate
,”
Integr. Mater. Manuf. Innovation
,
9
(
4
), pp.
358
375
.10.1007/s40192-020-00188-y
21.
Denker
,
J. S.
, and
LeCun
,
Y.
,
1990
, “
Transforming Neural-Net Output Levels to Probability Distributions
,” Proceedings of the 3rd International Conference on Neural Information Processing Systems (
NIPS'90
), Morgan Kaufmann Publishers Inc., San Francisco, CA, pp.
853
859
.10.5555/2986766.2986882
22.
MacKay
,
D. J.
,
1992
, “
A Practical Bayesian Framework for Backpropagation Networks
,”
Neural Comput.
,
4
(
3
), pp.
448
472
.10.1162/neco.1992.4.3.448
23.
Neal
,
R. M.
,
1996
,
Bayesian Learning for Neural Networks
(Lecture Notes in Statistics), Springer, New York.
24.
Blundell
,
C.
,
Cornebise
,
J.
,
Kavukcuoglu
,
K.
, and
Wierstra
,
D.
,
2015
, “
Weight Uncertainty in Neural Network
,”
Proceedings of the 32nd International Conference on Machine Learning
, Vol.
37
, PMLR, Lille, France, July 7–9, pp.
1613
1622
.
25.
Beaumont
,
M. A.
,
Zhang
,
W.
, and
Balding
,
D. J.
,
2002
, “
Approximate Bayesian Computation in Population Genetics
,”
Genetics
,
162
(
4
), pp.
2025
2035
.10.1093/genetics/162.4.2025
26.
Gilks
,
W. R.
,
2005
, “
Markov Chain Monte Carlo
,”
Encyclopedia Biostatistics
, Vol.
4
, Wiley, New York.
27.
Arulampalam
,
M. S.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T.
,
2002
, “
A Tutorial on Particle Filters for Online Nonlinear/non-Gaussian Bayesian Tracking
,”
IEEE Trans. Signal Process.
,
50
(
2
), pp.
174
188
.10.1109/78.978374
28.
Gal
,
Y.
, and
Ghahramani
,
Z.
,
2016
, “
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
,”
Proceedings of the 33rd International Conference on Machine Learning
, (Proceedings of Machine Learning Research, Vol.
48
), PMLR, New York, June 20–22, pp.
1050
1059
.
29.
Kendall
,
A.
, and
Gal
,
Y.
,
2017
, “
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems
, NIPS'17, Vol.
30
,
Curran Associates, Inc
., pp.
5580
5590
.
30.
Zaman
,
K.
,
McDonald
,
M.
,
Mahadevan
,
S.
, and
Green
,
L.
,
2011
, “
Robustness-Based Design Optimization Under Data Uncertainty
,”
Struct. Multidiscip. Optim.
,
44
(
2
), pp.
183
197
.10.1007/s00158-011-0622-2
31.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.10.1115/1.1649968
32.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
33.
Zitzler
,
E.
,
Brockhoff
,
D.
, and
Thiele
,
L.
,
2007
, “
The Hypervolume Indicator Revisited: On the Design of Pareto-Compliant Indicators Via Weighted Integration
,”
International Conference on Evolutionary Multi-Criterion Optimization
,
Springer
, Berlin, pp.
862
876
.
34.
Knowles
,
J. D.
,
Thiele
,
L.
, and
Zitzler
,
E.
,
2006
, “
A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers
,”
TIK-Rep.
,
214
, Report.
35.
Zitzler
,
E.
,
Thiele
,
L.
,
Laumanns
,
M.
,
Fonseca
,
C. M.
, and
Da Fonseca
,
V. G.
,
2003
, “
Performance Assessment of Multiobjective Optimizers: An Analysis and Review
,”
IEEE Trans. Evol. Comput.
,
7
(
2
), pp.
117
132
.10.1109/TEVC.2003.810758
36.
Zitzler
,
E.
,
Deb
,
K.
, and
Thiele
,
L.
,
2000
, “
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
,”
Evol. Comput.
,
8
(
2
), pp.
173
195
.10.1162/106365600568202
37.
Ling
,
Y.
, and
Mahadevan
,
S.
,
2013
, “
Quantitative Model Validation Techniques: New Insights
,”
Reliab. Eng. Syst. Saf.
,
111
(▪), pp.
217
231
.10.1016/j.ress.2012.11.011
38.
▪, ▪, “
Ultimaker S5 Specifications
,” ▪, ▪, accessed Feb. 1, 2020, https://ultimaker.com/3d-printers/ultimaker-s5
39.
▪, ▪, “
Keyence LK-H057 Specifications
,” ▪, ▪, accessed July 29, 2019, https://www.keyence.com/products/measure/laser-1d/lk-g5000/models/lk-h057/index.jsp
40.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
You do not currently have access to this content.