Abstract

Creep rupture data are not always available at the desired temperature or stress levels, and performing creep tests can be both time-consuming and expensive. Creep rupture data from various sources are often combined for modeling. However, such combined data may overlap or exhibit a wide scatter band because of different metadata factors. A small change in chemical composition may affect the creep properties, creating a large variation in the rupture data. Machine learning (ML) offers a way to model these variations by including metadata such as chemical compositions. This study applies a python-based machine learning approach to predict the creep rupture in the form of Larson–Miller parameters (LMPs) of Inconel 617. Data from eight different sources (General Electric Company (GE), Oak Ridge National Laboratory (ORNL), German High-Temperature Gas Cooled Reactor (HTGR), Huntington Alloy, Korea Atomic Energy Research Institute (KAERI), Argonne National Lab (ANL), Atomic Energy Commission, and advanced ultrasupercritical (A-USC) boiler material data) which encompass multiple heats are used. Pearson correlation coefficient (PCC) and Spearman correlation coefficient (SCC) are employed to rank the input features based on their correlation with the Larson–Miller parameter, followed by an assessment of feature selection. Seven different regression methods (random forest (RF) regression, linear regression (LR), K-nearest neighbor (KNN), least absolute shrinkage and selection operator (LASSO), support vector regression (SVR), gradient boosting (GB) regression, and extreme gradient boosting (XGB)) are used for model training. The data are randomly split into training and testing datasets where the resulting prediction model is validated against testing data that is not used in calibration. Fivefold cross-validation and model learning curves are analyzed to rank model performances. A two-stage hyperparameter tuning is performed on suitable models for improved accuracy and stability and to minimize overfitting risk.

References

1.
Haque
,
M. S.
,
2020
, “
Extrapolation of Creep Rupture Data Using Parametric Numerical Isothermal Datum (P-NID) Method for Inconel 617
,”
ASME
Paper No. PVP2020-21316.10.1115/PVP2020-21316
2.
Homji
,
C. B. M.
, and
Gabriles
,
G.
,
1998
, “
Gas Turbine Blade Failures—Causes, Avoidance, and Troubleshooting
,”
27th Turbomachinery Symposium
, College Station, TX, Sept. 22–24, p.
129
.10.21423/R1RD4R
3.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2019
, “
The Disparate Data Problem: The Calibration of Creep Laws Across Test Type and Stress, Temperature, and Time Scales
,”
Theor. Appl. Fract. Mech.
,
100
, pp.
251
268
.10.1016/j.tafmec.2019.01.018
4.
Quinci
,
G.
,
Paolacci
,
F.
, and
Phan
,
H. N.
,
2023
, “
Artificial Neural Network Technique for Seismic Fragility Analysis of a Storage Tank Supported by Multi-Storey Frame
,”
ASME J. Pressure Vessel Technol.
,
145
(
6
), p.
061901
.10.1115/1.4063242
5.
Naser
,
M. Z.
,
2019
, “
AI-Based Cognitive Framework for Evaluating Response of Concrete Structures in Extreme Conditions
,”
Eng. Appl. Artif. Intell.
,
81
, pp.
437
449
.10.1016/j.engappai.2019.03.004
6.
Possidente
,
L.
, and
Couto
,
C.
,
2025
, “
Explained Fire Resistance Machine Learning Models for Compressed Steel Members of Trusses and Bracing Systems
,”
Eng. Appl. Artif. Intell.
,
139
, p.
109571
.10.1016/j.engappai.2024.109571
7.
Qiu
,
J.
, and
Jiang
,
L.
,
2023
, “
Development of Modular and Reusable AI Models for Fast Predicting Fire Behaviour of Steel Columns in Structural Systems
,”
Eng. Struct.
,
297
, p.
116994
.10.1016/j.engstruct.2023.116994
8.
Morgan
,
D.
,
Pilania
,
G.
,
Couet
,
A.
,
Uberuaga
,
B. P.
,
Sun
,
C.
, and
Li
,
J.
,
2022
, “
Machine Learning in Nuclear Materials Research
,”
Curr. Opin. Solid State Mater. Sci.
,
26
(
2
), p.
100975
.10.1016/j.cossms.2021.100975
9.
Singh
,
K.
,
Goswami
,
K.
,
Sahoo
,
R.
, and
Samal
,
S.
,
2024
, “
Design and Development of an Advanced Material for Beampipe Applications in Particle Accelerators
,” preprint
arXiv:2409.13415
.10.48550/arXiv:2409.13415
10.
Wang
,
L.
,
Liu
,
X.
,
Fan
,
P.
,
Zhu
,
L.
,
Zhang
,
K.
,
Wang
,
K.
,
Song
,
C.
, and
Ren
,
S.
,
2023
, “
A Creep Life Prediction Model of P91 Steel Coupled With Back-Propagation Artificial Neural Network (BP-ANN) and θ Projection Method
,”
Int. J. Pressure Vessels Piping
,
206
, p.
105039
.10.1016/j.ijpvp.2023.105039
11.
Narula
,
P.
,
Kumar
,
P. A.
,
Vanaja
,
J.
,
Reddy
,
G. P.
, and
Rao
,
G. N.
,
2023
, “
Machine Learning Assisted Prediction of Creep Data of India Specific Reduced Activation Ferritic Martensitic Steel
,”
Mater. Today Commun.
,
35
, p.
106165
.10.1016/j.mtcomm.2023.106165
12.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2020
, “
Metamodeling Time-Temperature Creep Parameters
,”
ASME J. Pressure Vessel Technol.
,
142
(
3
), p.
031504
.10.1115/1.4045887
13.
He
,
J. J.
, and
Sandström
,
R.
,
2022
, “
Creep Rupture Prediction Using Constrained Neural Networks With Error Estimates
,”
Mater. High Temp.
,
39
(
3
), pp.
239
251
.10.1080/09603409.2022.2078147
14.
Hossain
,
M. A.
, and
Stewart
,
C. M.
,
2025
, “
Creep Lifetime Prediction of Alloy 617 Using Black Box Machine Learning Approach
,”
ASME J. Eng. Gas Turbines Power
,
147
(
4
), p.
041024
.10.1115/1.4066600
15.
Chai
,
M.
,
He
,
Y.
,
Li
,
Y.
,
Song
,
Y.
,
Zhang
,
Z.
, and
Duan
,
Q.
,
2023
, “
Machine Learning-Based Framework for Predicting Creep Rupture Life of Modified 9Cr-1Mo Steel
,”
Appl. Sci.
,
13
(
8
), p.
4972
.10.3390/app13084972
16.
Liu
,
Y.
,
Wu
,
J.
,
Wang
,
Z.
,
Lu
,
X.-G.
,
Avdeev
,
M.
,
Shi
,
S.
,
Wang
,
C.
, and
Yu
,
T.
,
2020
, “
Predicting Creep Rupture Life of Ni-Based Single Crystal Superalloys Using Divide-and-Conquer Approach-Based Machine Learning
,”
Acta Mater.
,
195
, pp.
454
467
.10.1016/j.actamat.2020.05.001
17.
Haque
,
M. S.
,
Ramirez
,
C.
, and
Stewart
,
C. M.
,
2017
, “
A Novel Metamodeling Approach for Time-Temperature Parameter Models
,”
ASME
Paper No. PVP2017-65297.10.1115/PVP2017-65297
18.
Peng
,
J.
,
Yamamoto
,
Y.
,
Brady
,
M. P.
,
Lee
,
S.
,
Haynes
,
J. A.
, and
Shin
,
D.
,
2021
, “
Uncertainty Quantification of Machine Learning Predicted Creep Property of Alumina-Forming Austenitic Alloys
,”
JOM
,
73
(
1
), pp.
164
173
.10.1007/s11837-020-04423-x
19.
Wang
,
J.
,
Fa
,
Y.
,
Tian
,
Y.
, and
Yu
,
X.
,
2021
, “
A Machine-Learning Approach to Predict Creep Properties of Cr–Mo Steel With Time-Temperature Parameters
,”
J. Mater. Res. Technol.
,
13
, pp.
635
650
.10.1016/j.jmrt.2021.04.079
20.
Yang
,
C.
,
Ma
,
W.
,
Zhong
,
J.
, and
Zhang
,
Z.
,
2021
, “
Comparative Study of Machine Learning Approaches for Predicting Creep Behavior of Polyurethane Elastomer
,”
Polymers
,
13
(
11
), p.
1768
.10.3390/polym13111768
21.
Zhang
,
X. C.
,
Gong
,
J. G.
, and
Xuan
,
F. Z.
,
2021
, “
A Deep Learning-Based Life Prediction Method for Components Under Creep, Fatigue, and Creep-Fatigue Conditions
,”
Int. J. Fatigue
,
148
, p.
106236
.10.1016/j.ijfatigue.2021.106236
22.
Han
,
H.
,
Li
,
W.
,
Antonov
,
S.
, and
Li
,
L.
,
2022
, “
Mapping the Creep Life of Nickel-Based SX Superalloys in a Large Compositional Space by a Two-Model Linkage Machine Learning Method
,”
Comput. Mater. Sci.
,
205
, p.
111229
.10.1016/j.commatsci.2022.111229
23.
Tan
,
Y.
,
Wang
,
X.
,
Kang
,
Z.
,
Ye
,
F.
,
Chen
,
Y.
,
Zhou
,
D.
,
Zhang
,
X.
, and
Gong
,
J.
,
2022
, “
Creep Lifetime Prediction of 9% Cr Martensitic Heat-Resistant Steel Based on Ensemble Learning Method
,”
J. Mater. Res. Technol.
,
21
, pp.
4745
4760
.10.1016/j.jmrt.2022.11.067
24.
Nakamura
,
K.
, and
Ohnuma
,
T.
,
2023
, “
Machine-Learning Investigation on the Creep-Rupture Time of Heat-Resistant Steels
,”
Mater. Today Commun.
,
36
, p.
106687
.10.1016/j.mtcomm.2023.106687
25.
Zou
,
F.
,
Liu
,
P.
,
Chen
,
Y.
, and
Zhao
,
Y.
,
2024
, “
Machine Learning-Based Predictions and Analyses of the Creep Rupture Life of the Ni-Based Single Crystal Superalloy
,”
Sci. Rep.
,
14
(
1
), p.
20716
.10.1038/s41598-024-71431-1
26.
Sjodahl
,
L. H.
,
1978
, “
A Comprehensive Method of Rupture Data Analysis With Simplified Models
,”
Characterization of Materials for Service at Elevated Temperatures, MPC-7
,
ASME
,
New York
, pp.
501
515
.
27.
Prager
,
M.
,
Osage
,
D. A.
,
Panzarella
,
C. H.
, and
Brown
,
R. G.
,
2014
, “
Development of a Material Databook for API STD 530
,”
ASME
Paper No. PVP2014-28538.10.1115/PVP2014-28538
28.
Swindeman
,
R. W.
,
Swindeman
,
M. J.
, and
Ren
,
W.
,
2005
, “
A Brief Review of Models Representing Creep of Alloy 617
,”
ASME
3 Paper No. PVP2005-71784.10.1115/PVP2005-71784
29.
Kim
,
W. G.
,
Park
,
J. Y.
,
Ekaputra
,
I. M. W.
,
Hong
,
S. D.
,
Kim
,
S. J.
, and
Kim
,
Y. W.
,
2013
, “
Comparative Study on the High-Temperature Tensile and Creep Properties of Alloy 617 Base and Weld Metals
,”
J. Mech. Sci. Technol.
,
27
(
8
), pp.
2331
2340
.10.1007/s12206-013-0616-7
30.
Akbari-Garakani
,
M.
, and
Mehdizadeh
,
M.
,
2011
, “
Effect of Long-Term Service Exposure on Microstructure and Mechanical Properties of Alloy 617
,”
Mater. Des.
,
32
(
5
), pp.
2695
2700
.10.1016/j.matdes.2011.01.017
31.
Ren
,
W.
, and
Swindeman
,
R.
,
2009
, “
A Review on Current Status of Alloys 617 and 230 for Gen IV Nuclear Reactor Internals and Heat Exchangers
,”
ASME J. Pressure Vessel Technol.
,
131
(
4
), p.
044002
.10.1115/1.3121522
32.
Klöwer
,
J.
,
2017
, “
Alloy 617 and Derivatives
,”
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants
,
Woodhead Publishing
, Sawston, UK, pp.
547
570
.
33.
Ren
,
W.
, and
Swindeman
,
R. W.
,
2005
, “
Assessment of Existing Alloy 617 Data for GEN IV Materials Handbook
,” Oak Ridge National Lab. (ORNL), Oak Ridge, TN, Report No.
ORNL/TM-2005/510
.10.2172/1093000
34.
Kim
,
W. G.
,
Park
,
J. Y.
,
Ekaputra
,
I. M. W.
,
Kim
,
S. J.
,
Kim
,
M. H.
, and
Kim
,
Y. W.
,
2015
, “
Creep Deformation and Rupture Behavior of Alloy 617
,”
Eng. Failure Anal.
,
58
, pp.
441
451
.10.1016/j.engfailanal.2015.07.041
35.
Natesan
,
K.
,
Li
,
M.
,
Soppet
,
W. K.
, and
Rink
,
D. L.
,
2012
, “
Creep Rupture Testing of Alloy 617 and A508/533 Base Metals and Weldments
,”
Argonne National Lab. (ANL)
,
Argonne, IL
, Report No.
ANL/EXT-11/46
.https://publications.anl.gov/anlpubs/2011/12/71528.pdf
36.
Chomette
,
S.
,
Gentzbittel
,
J. M.
, and
Viguier
,
B.
,
2010
, “
Creep Behaviour of as Received, Aged, and Cold Worked INCONEL 617 at 850 °C and 950 °C
,”
J. Nucl. Mater.
,
399
(
2–3
), pp.
266
274
.10.1016/j.jnucmat.2010.01.019
37.
Purgert
,
R.
,
Shingledecker
,
J.
,
Pschirer
,
J.
,
Ganta
,
R.
,
Weitzel
,
P.
,
Sarver
,
J.
,
Vitalis
,
B.
,
Gagliano
,
M.
,
Stanko
,
G.
, and
Tortorelli
,
P.
,
2015
, “
Boiler Materials for Ultra Supercritical Coal Power Plants
,” Energy Industries of Ohio, Independence, OH, Report No.
DOE-EIO-EPRI-01NT41175
.10.2172/1346714
You do not currently have access to this content.