Abstract

Compact heat exchangers are renowned for their high heat transfer rates and efficiency, achieved by incorporating mini and microchannels in their core design. However, operating under conditions of high-pressure fluctuations and significant temperature differences between hot and cold streams can potentially induce fatigue failure. To the best of our knowledge, this study represents the first investigation into the thermal stresses experienced by heat exchanger samples manufactured by selective laser melting (SLM) technology, focusing on circular channels. Experiments were conducted using hot water in the inner channel, while the remaining channels and the sample surface were subjected to natural convection in ambient air. Strain gauges, thermocouples, and resistance temperature detector (RTDs) were employed to measure strain and temperature variations over time. These data were utilized as inputs for a numerical model based on finite element method (FEM). The strain measurements were compared with those obtained from the numerical model, revealing an average difference of approximately 20%. Lastly, a thermal fatigue analysis based on the maximum equivalent stresses predicted by the numerical model is presented. The evaluation considered both S–N curves: outlined in the ASME standard and the one obtained with specimens produced through selective laser melting. In the case of circular channels manufactured through additive manufacturing evaluated in this work, thermal stresses alone are insufficient to cause component failure due to fatigue. However, significant pressure cycles superimposed on the model can reverse this situation, making the combined effect of thermal and mechanical stresses influential in determining the component's fatigue behavior.

References

1.
Shah
,
R. K.
, and
Sekulić
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
Hoboken, NJ
.
2.
Tang
,
L.
,
Cao
,
Z.
, and
Pan
,
J.
,
2020
, “
Investigation on the Thermal-Hydraulic Performance in a PCHE With Airfoil Fins for Supercritical LNG Near the Pseudo-Critical Temperature Under the Rolling Condition
,”
Appl. Therm. Eng.
,
175
, p.
115404
.10.1016/j.applthermaleng.2020.115404
3.
Saeed
,
M.
, and
Kim
,
M.-H.
,
2017
, “
Thermal and Hydraulic Performance of SCO2 PCHE With Different Fin Configurations
,”
Appl. Therm. Eng.
,
127
, pp.
975
985
.10.1016/j.applthermaleng.2017.08.113
4.
Jin
,
F.
,
Chen
,
D.
,
Hu
,
L.
,
Huang
,
Y.
,
Zeng
,
H.
, and
Wang
,
J.
,
2022
, “
Thermo-Hydraulic Performance of Printed Circuit Heat Exchanger as Precooler in Supercritical CO2 Brayton Cycle
,”
Appl. Therm. Eng.
,
210
, p.
118341
.10.1016/j.applthermaleng.2022.118341
5.
Zhao
,
Z.
,
Zhang
,
Y.
,
Chen
,
X.
,
Ma
,
X.
,
Yang
,
S.
, and
Li
,
S.
,
2020
, “
Experimental and Numerical Investigation of Thermal-Hydraulic Performance of Supercritical Nitrogen in Airfoil Fin Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
168
, p.
114829
.10.1016/j.applthermaleng.2019.114829
6.
Chen
,
M.
,
Sun
,
X.
,
Christensen
,
R. N.
,
Skavdahl
,
I.
,
Utgikar
,
V.
, and
Sabharwall
,
P.
,
2016
, “
Pressure Drop and Heat Transfer Characteristics of a High-Temperature Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
108
, pp.
1409
1417
.10.1016/j.applthermaleng.2016.07.149
7.
Shin
,
J.-H.
, and
Yoon
,
S. H.
,
2020
, “
Thermal and Hydraulic Performance of a Printed Circuit Heat Exchanger Using Two-Phase Nitrogen
,”
Appl. Therm. Eng.
,
168
, p.
114802
.10.1016/j.applthermaleng.2019.114802
8.
Strobel
,
M.
, and
Mortean
,
M. V. V.
,
2022
, “
Pressure Drop and Fluid Maldistribution Analysis of a Compact Heat Exchanger Manufactured by 3D Printing
,”
Int. J. Therm. Sci.
,
172
, p.
107331
.10.1016/j.ijthermalsci.2021.107331
9.
Mylavarapu
,
S. K.
,
Sun
,
X.
,
Christensen
,
R. N.
,
Unocic
,
R. R.
,
Glosup
,
R. E.
, and
Patterson
,
M. W.
,
2012
, “
Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers
,”
Nucl. Eng. Des.
,
249
, pp.
49
56
.10.1016/j.nucengdes.2011.08.043
10.
Zhang
,
X.
,
Shi
,
S.
,
Christensen
,
R. N.
, and
Sun
,
X.
,
2017
, “
Review on Mechanical Design of Printed Circuit Heat Exchangers
,”
ASME
Paper No. ICONE25-67284.10.1115/ICONE25-67284
11.
de la Torre
,
R.
,
François
,
J.-L.
, and
Lin
,
C.-X.
,
2020
, “
Assessment of the Design Effects on the Structural Performance of the Printed Circuit Heat Exchanger Under Very High Temperature Condition
,”
Nucl. Eng. Des.
,
365
, p.
110713
.10.1016/j.nucengdes.2020.110713
12.
Lee
,
Y.
, and
Lee
,
J. I.
,
2014
, “
Structural Assessment of Intermediate Printed Circuit Heat Exchanger for Sodium-Cooled Fast Reactor With Supercritical CO2 Cycle
,”
Ann. Nucl. Energy
,
73
, pp.
84
95
.10.1016/j.anucene.2014.06.022
13.
Kwon
,
J. S.
,
Kim
,
D. H.
,
Shin
,
S. G.
,
Lee
,
J. I.
, and
Kim
,
S. J.
,
2022
, “
Assessment of Thermal Fatigue Induced by Dryout Front Oscillation in Printed Circuit Steam Generator
,”
Nucl. Eng. Technol.
,
54
(
3
), pp.
1085
1097
.10.1016/j.net.2021.09.004
14.
Song
,
K.
, and
Hong
,
S.
,
2013
, “
Structural Integrity Evaluation of a Lab-Scale PCHE Prototype Under the Test Conditions of HELP
,”
Sci. Technol. Nucl. Install.
,
2013
, pp.
1
7
.10.1155/2013/520145
15.
Hou
,
Y.
, and
Tang
,
G.
,
2019
, “
Thermal-Hydraulic-Structural Analysis and Design Optimization for Micron-Sized Printed Circuit Heat Exchanger
,”
J. Therm. Sci.
,
28
(
2
), pp.
252
261
.10.1007/s11630-018-1062-8
16.
Dixit
,
T.
,
Al-Hajri
,
E.
,
Paul
,
M. C.
,
Nithiarasu
,
P.
, and
Kumar
,
S.
,
2022
, “
High Performance, Microarchitected, Compact Heat Exchanger Enabled by 3D Printing
,”
Appl. Therm. Eng.
,
210
(
2022
), p.
118339
.10.1016/j.applthermaleng.2022.118339
17.
Sciacca
,
G.
,
Sinico
,
M.
,
Cogo
,
G.
,
Bigolaro
,
D.
,
Pepato
,
A.
, and
Esposito
,
J.
,
2022
, “
Experimental and Numerical Characterization of Pure Copper Heat Sinks Produced by Laser Powder Bed Fusion
,”
Mater. Des.
,
214
(
2022
), p.
110415
.10.1016/j.matdes.2022.110415
18.
Jafari
,
D.
, and
Wits
,
W. W.
,
2018
, “
The Utilization of Selective Laser Melting Technology on Heat Transfer Devices for Thermal Energy Conversion Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
91
(
2018
), pp.
420
442
.10.1016/j.rser.2018.03.109
19.
Anand
,
M.
, and
Das
,
A. K.
,
2021
, “
Issues in Fabrication of 3D Components Through DMLS Technique: A Review
,”
Opt. Laser Technol.
,
139
(
2021
), p.
106914
.10.1016/j.optlastec.2021.106914
20.
Malladi
,
A.
, and
Karunakaran
,
K.
,
2021
, “
DMLS – An Insight for Unproblematic Production
,”
Mater. Today: Proc.
,
37
, pp.
1986
1990
.10.1016/j.matpr.2020.07.492
21.
Mishurova
,
T.
,
Artzt
,
K.
,
Haubrich
,
J.
,
Requena
,
G.
, and
Bruno
,
G.
,
2019
, “
New Aspects About the Search for the Most Relevant Parameters Optimizing SLM Materials
,”
Addit. Manuf.
,
25
, pp.
325
334
.10.1016/j.addma.2018.11.023
22.
da Silva
,
R. P. P.
,
Mortean
,
M. V. V.
,
de Paiva
,
K. V.
,
Beckedorff
,
L. E.
,
Oliveira
,
J. L. G.
,
Brandão
,
F. G.
,
Monteiro
,
A. S.
, et al.,
2021
, “
Thermal and Hydrodynamic Analysis of a Compact Heat Exchanger Produced by Additive Manufacturing
,”
Appl. Therm. Eng.
,
193
, p.
116973
.10.1016/j.applthermaleng.2021.116973
23.
EOS GmbH Electro Optical Systems
,
2014
, “
Material Data Sheet: EOS Stainless Steel 316 L
,” Company Publication, Krailling, Germany, accessed Sept. 30, 2024, https://www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/stainlesssteel/material_datasheet_eos_stainlesssteel_316l_en_web.pdf
24.
Simmons
,
J.
,
Daeumer
,
M.
,
Azizi
,
A.
, and
Schiffres
,
S. N.
,
2018
, “
Local Thermal Conductivity Mapping of Selective Laser Melted 316 L Stainless Steel
,”
2018 International Solid Freeform Fabrication Symposium
, University of Texas at Austin, Austin, TX, Aug. 13–15, pp.
1694
1707
.10.26153/tsw/17161
25.
Holman
,
J. P.
,
2012
,
Experimental Methods for Engineers
, 8th ed.,
McGraw-Hill/Connect Learn Succeed
,
Boston, MA
.
26.
ISO GUM
,
1993
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,” International Organization for Standardization, Geneva, Switzerland, accessed Sept. 10, 2023, https://www.iso.org
27.
Hibbeler
,
R. C.
,
2011
,
Mechanics of Materials
, 8th ed.,
Prentice Hall
,
Boston, MA
.
28.
ANSYS, Inc
., 2017, “
Ansys Software Version is 18.2. Ansys® Academic Research Mechanical, Release 18.2
,” ANSYS, Inc., Canonsburg, PA.
29.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2012
, “
Transfercia De Calor e Massa: Uma Abordagem Prática
,” McGraw-Hill, São Paulo-SP, Brazil.
30.
Spang
,
B.
,
1996
, “
Einfluß Der Thermischen Randbedingung Auf Den Laminaren Wärmeübergang Im Kreisrohr Bei Hydrodynamischer Einlaufströmung
,”
Heat Mass Transfer
,
31
(
4
), pp.
199
204
.10.1007/BF02328609
31.
Teixeira Júnior
,
M.
,
Zilio
,
G.
,
Mortean
,
M. V. V.
,
de Paiva
,
K. V.
, and
Oliveira
,
J. L. G.
,
2023
, “
Experimental and Numerical Analysis of Transient Thermal Stresses on Thick-Walled Cylinder
,”
Int. J. Pressure Vessels Piping
,
202
, p.
104884
.10.1016/j.ijpvp.2023.104884
32.
Zilio
,
G.
,
Teixeira
,
M. J.
,
Mortean
,
M. V. V.
,
Brandão
,
F. G.
,
Pontin
,
T. T.
,
Oliveira
,
J. L. G.
, and
Paiva
,
K. V.
,
2022
, “
Structural Analysis of Compact Heat Exchanger Samples Fabricated by Additive Manufacturing
,”
Int. J. Pressure Vessels Piping
,
199
, p.
104714
.10.1016/j.ijpvp.2022.104714
33.
Elangeswaran
,
C.
,
Cutolo
,
A.
,
Muralidharan
,
G. K.
,
de Formanoir
,
C.
,
Berto
,
F.
,
Vanmeensel
,
K.
, and
Van Hooreweder
,
B.
,
2019
, “
Effect of Post-Treatments on the Fatigue Behaviour of 316 L Stainless Steel Manufactured by Laser Powder Bed Fusion
,”
Int. J. Fatigue
,
123
, pp.
31
39
.10.1016/j.ijfatigue.2019.01.013
34.
Zhang
,
M.
,
Sun
,
C.-N.
,
Zhang
,
X.
,
Wei
,
J.
,
Hardacre
,
D.
, and
Li
,
H.
,
2018
, “
Predictive Models for Fatigue Property of Laser Powder Bed Fusion Stainless Steel 316 L
,”
Mater. Des.
,
145
, pp.
42
54
.10.1016/j.matdes.2018.02.054
35.
ASME
,
2021
, “
ASME Boiler & Pressure Vessel Code
,” ASME, New York.
36.
Wei
,
F.
,
Cheng
,
B.
,
Kumar
,
P.
,
Wang
,
P.
,
Lee
,
J. J.
,
Seng
,
H. L.
,
Cheong
,
K. H.
,
Lau
,
K. B.
, and
Tan
,
C. C.
,
2022
, “
A Comparative Study of Additive Manufactured and Wrought SS316 L: Pre-Existing Dislocations and Grain Boundary Characteristics
,”
Mater. Sci. Eng.: A
,
833
, p.
142546
.10.1016/j.msea.2021.142546
37.
Gor
,
M.
,
Soni
,
H.
,
Singh Rajput
,
G.
, and
Sahlot
,
P.
,
2022
, “
Experimental Investigation of Mechanical Properties for Wrought and Selective Laser Melting Additively Manufactured SS316 L and MS300
,”
Mater. Today: Proc.
,
62
, pp.
7215
7219
.10.1016/j.matpr.2022.03.511
38.
Kim
,
K.-T.
,
2022
, “
Mechanical Performance of Additively Manufactured Austenitic 316 L Stainless Steel
,”
Nucl. Eng. Technol.
,
54
(
1
), pp.
244
254
.10.1016/j.net.2021.07.041
39.
Shin
,
W.-S.
,
Son
,
B.
,
Song
,
W.
,
Sohn
,
H.
,
Jang
,
H.
,
Kim
,
Y.-J.
, and
Park
,
C.
,
2021
, “
Heat Treatment Effect on the Microstructure, Mechanical Properties, and Wear Behaviors of Stainless Steel 316 L Prepared Via Selective Laser Melting
,”
Mater. Sci. Eng.: A
,
806
, p.
140805
.10.1016/j.msea.2021.140805
You do not currently have access to this content.