Abstract

This study analyzes the effect of the pipe material type on the transient flow behavior in a pumping system due to an accidental pump shutdown. The material types addressed in this study include steel and high- or low-density polyethylene (HDPE) or (LDPE), involving elastic and plastic rheological pipe-wall behavior. The numerical solution is developed based on the method of characteristics used for the discretization of the extended one-dimensional pressurized-pipe flow model, incorporating the Kelvin-Voigt and Vitkovsky rules. Experimental data from the literature were used to validate the numerical solver. The proposed numerical algorithm is then used to investigate the transient pressure-wave behavior induced by the power failure to a pumping station composed of an inline connection using different pipe material types. The findings show the severity of such a scenario, in terms of the magnitudes of induced up-surge and down-surge pressure waves. Furthermore, this research demonstrates that plastic pipe-wall materials allow for substantial attenuation of surge magnitude in conjunction with the expansion of the period of pressure-wave oscillations. The observed attenuation and expansion effects are also found to be highly dependent on the plastic material type. In this respect, the findings indicate that the (LDPE-steel) piping system's specific layout allows for the best tradeoff between the two last effects.

References

1.
Thorley
,
A. R. D.
, and
Faithfull
,
E. M.
,
1992
, “
Inertias of Pumps and Their Driving Motors
,”
Proceedings International Conference on Unsteady Flow and Fluid Transients
,
R.
Bettess
, and
J.
Watts
, eds., Balkema, Rotterdam, The Netherlands, pp.
285
289
.
2.
Thorley
,
A. R. D.
,
2004
,
Fluid Transients in Pipeline Systems: A Guide to the Control and Suppression of Fluid Transients in Liquids in Closed Conduits
, 2nd ed.,
ASME Press
,
Wiley–Blackwell
, London, UK.10.1007/978-3-030-76517-0_14
3.
Wan
,
W.
,
Zhang
,
B.
, and
Chen
,
X.
,
2018
, “
Investigation on Water Hammer Control of Centrifugal Pumps in Water Supply Pipeline Systems
,”
Energies
,
12
(
1
), p.
108
.10.3390/en12010108
4.
Besharat
,
M.
,
Tarinejad
,
R.
,
Aalami
,
M. T.
, and
Ramos
,
H. M.
,
2016
, “
Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis
,”
Water Resour. Manag.
,
30
(
8
), pp.
2687
2702
.10.1007/s11269-016-1310-1
5.
Lai
,
Z.
,
Qian
,
L.
,
Karney
,
B.
,
Yang
,
S.
,
Wu
,
D.
, and
Zhang
,
F.
,
2018
, “
Numerical Simulation of a Check Valve Closure Induced by Pump Shutdown
,”
J. Hydraul. Eng.
,
144
(
12
), p.
06018013
.10.1061/(ASCE)HY.1943-7900.0001543
6.
Wang
,
X.
,
Zhang
,
J.
,
Chen
,
S.
,
Shi
,
L.
, and
Zhao
,
W.
,
2021
, “
Valve Closure Based on Pump Runaway Characteristics in Long Distance Pressurized Systems
,”
J. Water Supply: Res. Technol.-Aqua
, 70(4), pp.
493
506
.10.2166/aqua.2021.007
7.
Soares
,
A. K.
,
Covas
,
D.
, and
Ramos
,
H. M.
,
2013
, “
Damping Analysis of Hydraulic Transients in Pump-Rising Main Systems
,”
J. Hydraul. Eng.
,
139
(
2
), pp.
233
243
.10.1061/(ASCE)HY.1943-7900.0000663
8.
Mery
,
H. O.
,
Hassan
,
J. M.
, and
Ekaid
,
A. L.
,
2021
, “
Water Hammer Mitigation by Air Vessel and Bypass Forward Configuration
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1094
(
1
), p.
012052
.10.1088/1757-899X/1094/1/012052
9.
Henclik
,
S.
,
2021
, “
Application of the Shock Response Spectrum Method to Severity Assessment of Water Hammer Loads
,”
Mech. Syst. Signal Process.
,
157
, p.
107649
.10.1016/j.ymssp.2021.107649
10.
Essaidi
,
B.
, and
Triki
,
A.
,
2021
, “
Transient Comprehensive Modelling Due to Pump Failure
,” Proceedings of the Third International Conference on Acoustics and Vibration (
ICAV2021
), Vol.
17
,
N.
Feki
,
M. S.
Abbes
,
M.
Taktak
,
M. A.
Ben Souf
,
F.
Chaari
, and
M.
Haddar
, eds., Springer, Cham, Switzerland,
Mar.
15–16, pp.
117
124.
10.1007/978-3-030-76517-0_14
11.
Aklonis
,
J. J.
,
MacKnight
,
W. J.
, and
Shen
,
M.
,
1972
,
Introduction to Polymer Viscoelasticity
,
Wiley-Interscience
,
New York
.
12.
Covas
,
D.
,
Stoianov
,
I.
,
Ramos
,
H.
,
Graham
,
N.
,
Maksimovic
,
C.
, and
Butler
,
D.
,
2004
, “
Water-Hammer in Pressurized Polyethylene Pipes: Conceptual Model and Experimental Analysis
,”
Urban Water J
,.
1
(
2
), pp.
177
197
.10.1080/15730620412331289977
13.
Gally
,
M.
,
GüNey
,
M.
, and
Rieutord
,
E.
,
1979
, “
An Investigation of Pressure Transients in Viscoelastic Pipes
,”
ASME J. Fluid Eng. Trans. ASME
,
101
(
4
), pp.
495
499
.10.1115/1.3449017
14.
Javadi Orte Cheshme
,
J.
,
Ahmadi
,
A.
,
Keramat
,
A.
, and
Arniazi
,
A. S.
,
2021
, “
Sensitivity of Creep Coefficients to the Fundamental Water Hammer Period in Viscoelastic Pipes
,”
ASME Urban Water J.
,
18
(
3
), pp.
183
194
.10.1080/1573062X.2021.1877738
15.
Arifjanov
,
A.
,
Jonqobilov
,
U.
,
Jonqobilov
,
S.
,
Khushiev
,
S.
, and
Xusanova
,
J.
,
2020
, “
The Influence of Hydraulic Friction on the Maximum Pressure of Water Hammer
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
614
, p.
012092
.10.1088/1755-1315/614/1/012092
16.
Kubrak
,
M.
,
2021
, “
Experimental and Numerical Analysis of Water Hammer Phenomenon in Pipeline With Fiber Optic Cable
,”
J. Pipeline Syst. Eng. Pract.
,
12
(
1
), p.
04020066
.10.1061/(ASCE)PS.1949-1204.0000522
17.
Jonkobilov
,
U.
,
Jonkobilov
,
S.
,
Tashmurza
,
Y.
, and
Xoshiyev
,
S.
,
2021
, “
Influence of the Drag Coefficient on the Maximum Pressure of Water Hammer
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1030
, p.
012132
.10.1088/1757-899X/1030/1/012132
18.
Triki
,
A.
,
2016
, “
Water-Hammer Control in Pressurized-Pipe Flow Using an In-Line Polymeric Short-Section
,”
Acta Mech.
,
227
(
3
), pp.
777
793
.10.1007/s00707-015-1493-13
19.
Triki
,
A.
,
2018
, “
Dual-Technique Based Inline Design Strategy for Water-Hammer Control in Pressurized-Pipe Flow
,”
Acta Mech.
,
229
(
5
), pp.
2019
2039
.10.1007/s00707-017-2085-z
20.
Trabelsi
,
M.
, and
Triki
,
A.
,
2019
, “
Dual Control Technique for Mitigating Water-Hammer Phenomenon in Pressurized Steel-Piping Systems
,”
Int. J. Pressure Vessels Piping
,
172
, pp.
397
413
.10.1016/j.ijpvp.2019.04.011
21.
Ben Iffa
,
R.
, and
Triki
,
A.
,
2019
, “
Assessment of Inline Techniques -Based Water-Hammer Control Strategy in Water Supply Systems
,”
J. Water Supply Res. Technol.-AQUA
,
68
(
7
), pp.
562
572
.10.2166/aqua.2019.095
22.
Trabelsi
,
M.
, and
Triki
,
A.
,
2020
, “
Exploring the Performances of the Dual Technique-Based Water-Hammer Redesign Strategy in Water-Supply Systems
,”
J. Water Supply Res. Technol.-AQUA
,
69
(
1
), pp.
6
17
.10.2166/aqua.2019.010
23.
Triki
,
A.
,
2017
, “
Water-Hammer Control in Pressurized-Pipe Flow Using a Branched Polymeric Penstock
,”
J. Pipeline Syst. Eng. Pract. ASCE
,
8
(
4
), p.
04017024
.10.1061/(ASCE)PS.1949-1204.0000277
24.
Triki
,
A.
,
2018
, “
Further Investigation on Water-Hammer Control Inline Strategy in Water-Supply Systems
,”
J. Water Supply Res. Technol.-AQUA
,
67
(
1
), pp.
30
43
.10.2166/aqua.2017.073
25.
Triki
,
A.
, and
Fersi
,
M.
,
2018
, “
Further Investigation on the Water-Hammer Control Branching Strategy in Pressurized Steel-Piping Systems
,”
Int. J. Pressure Vessels Piping
,
165
, pp.
135
144
.10.1016/j.ijpvp.2018.06.002
26.
Triki
,
A.
, and
Chaker
,
M. A.
,
2019
, “
Compound Technique-Based Inline Design Strategy for Water-Hammer Control in Steel Pressurized-Piping Systems
,”
Int. J. Pressure Vessels Piping
,
169
, pp.
188
203
.10.1016/j.ijpvp.2018.12.001
27.
Chaker
,
M. A.
, and
Triki
,
A.
,
2020
, “
Investigating the Branching Redesign Strategy for Surge Control in Pressurized Steel Piping Systems
,”
Int. J. Pressure Vessel. Piping
,
180
, p.
104044
.10.1016/j.ijpvp.2020.104044
28.
Chaker
,
M. A.
, and
Triki
,
A.
,
2020
, “
The Branching Redesign Technique Used for Upgrading Steel-Pipes-Based Hydraulic Systems: Re-Examined
,” ASME
J. Pressure Vessel Technol.
,
143
(
3
), p.
031302
.
29.
Ben Amira
,
W.
, and
Triki
,
A.
,
2021
, “
Benchmarking the Dual and Compound Techniques -Based Branching Design Strategy Used for Upgrading of Hydraulic Systems
,”
ASME J. Pressure Vessel Technol.
,
143
(
2
), p.
021701
.10.1115/1.4049875
30.
Triki
,
A.
, and
Trabelsi
,
M.
,
2021
, “
Exploring the Performances of the Dual Technique-Based Water-Hammer Redesign Strategy in Water-Supply Systems
,”
Urban Water J.
, epub.10.2166/aqua.2019.010
31.
Duan
,
H.-F.
,
Pan
,
B.
,
Wang
,
M.
,
Chen
,
L.
,
Zheng
,
F.
, and
Zhang
,
Y.
,
2020
, “
State-of-the-Art Review on the Transient Flow Modeling and Utilization for Urban Water Supply System (UWSS) Management
,”
J. Water Supply Res. Technol.-AQUA
,
69
(
8
), pp.
858
893
.10.2166/aqua.2020.048
32.
Essaidi
,
B.
, and
Triki
,
A.
,
2021
, “
On the Transient Flow Behavior in Pressurized Plastic Pipe –Based Water Supply Systems
,”
J. Water Supply Res. Technol.-AQUA
,
70
(
1
), pp.
67
76
.10.2166/aqua.2020.051
33.
Ferrante
,
M.
,
2021
, “
Transients in a Series of Two Polymeric Pipes of Different Materials
,”
J. Hydraulic Res.
, epub.10.1080/00221686.2020.1844811
34.
Wylie
,
E. B.
,
Streeter
,
V. L.
, and
Lisheng
,
S.
,
1993
,
Fluid Transients in Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
35.
Chaudhry
,
M. H.
,
2014
,
Applied Hydraulic Transients
, 3rd ed.,
Van Nostrand Reinhold Co
,
New York
.
36.
Vítkovský
,
J. P.
,
Lambert
,
M. F.
, and
Simpson
,
A. R.
,
2000
, “
Advances in Unsteady Friction Modelling in Transient Pipe Flow
,”
Proceedings of Eighth International Conference on Pressure Surges—Safe Design and Operation of Industrial Pipe Systems
,
A.
Anderson
,
ed.,
BHR Group
,
Suffolk, UK
, pp.
471
498
(Publication No. 39).
37.
Martin
,
C. S.
,
1983
, “
Representation of Pump Characteristics for Transient Analysis
,”
ASME, Symposium on Performance Characteristics of Hydraulic Turbines and Pumps, Winter Annual Meeting, Boston, MA, Nov. 13–18, pp. 1–13.
38.
Donsky
,
B.
,
1961
, “
Complete Pump Characteristics and the Effects of Specific Speeds on Hydraulic Transients
,”
ASME J. Basic Eng.
,
83
(
4
), pp.
685
696
.10.1115/1.3662299
39.
Wan
,
W.
, and
Huang
,
W.
,
2011
, “
Investigation on Complete Characteristics and Hydraulic Transient of Centrifugal Pump
,”
ASME J. Mech. Sci. Technol
,.
25
(
10
), pp.
2583
2590
.10.1007/s12206-011-0729-9
40.
Keramat
,
A.
, and
Haghighi
,
A.
,
2014
, “
Straightforward Transient-Based Approach for the Creep Function Determination in Viscoelastic Pipes
,”
J. Hydraul. Eng.
,
140
(
12
), p.
04014058
.10.1061/(ASCE)HY.1943-7900.0000929
You do not currently have access to this content.