Abstract

In this article, a classification model is established for the flow-induced vibration response based on the numerical and experimental data, using a deep neural network-based machine learning approach. The model effectively distinguishes between hard galloping and soft galloping in flow-induced vibrations by identifying the corresponding range of system parameters. Moreover, a regression model is established to determine the relationship between the critical reduced velocity of hard galloping and system parameters, and then, an exploratory function strategy is utilized to establish the functional relationship between the critical reduced velocity of the hard galloping and the system parameters. The results reveal that the system parameter range with the occurrence of hard galloping is fn < 0.85∪ζ > −0.1fn + 0.19. Additionally, the functional relationship between the critical reduced velocity and system parameters facilitates the adjustment of vibration states in flow-induced vibrations and enables deeper investigation into the phenomenon of hard galloping.

References

1.
Zhang
,
J.
,
Lian
,
J. J.
,
Liu
,
F.
,
Lian
,
J.
, and
Yan
,
X.
,
2016
, “
Experimental Investigation on Flow Induced Motion of an Equilateral Triangle Prism
,”
J. Vibr. Shock
,
35
(
20
), pp.
17
23
.
2.
Chang
,
C. C.
,
2010
,
Hydrokinetic Energy Harnessing by Enhancement of Flow Induced Motion Using Passive Turbulence Control
,
University of Michigan
,
Michigan
.
3.
Chang
,
C.
, and
Bernitsas
,
M. M.
,
2011
, “
Hydrokinetic Energy Harnessing Using the VIVACE Converter With Passive Turbulence Control
,”
ASME 30th International Conference on Ocean, Offshore and Arctic
,
Rotterdam, the Netherlands
,
June 19–24
, pp.
899
908
.
4.
Park
,
H.
,
Kumar
,
A.
, and
Bernitsas
,
M. M.
,
2013
, “
Enhancement of Flow-Induced Motion of Rigid Circular Cylinder on Springs by Localized Surface Roughness at 3 × 104 ≤ Re ≤ 1.2 × 105
,”
Ocean Eng.
,
72
, pp.
403
415
.
5.
Zhang
,
J.
,
Liu
,
F.
,
Lian
,
J.
,
Yan
,
X.
, and
Ren
,
Q.
,
2016
, “
Flow Induced Vibration and Energy Extraction of an Equilateral Triangle Prism at Different System Damping Ratios
,”
Energies
,
9
(
11
), p.
938
.
6.
Yan
,
X.
,
2017
,
Study on Mechanism and Characteristics of Energy Conversion From Flow-Induced Motion Coupled With Electromagnetic
,
Tianjin University
,
Tianjin
.
7.
Lian
,
J. J.
,
Yan
,
X.
,
Liu
,
F.
,
Zhang
,
J.
,
Ren
,
Q.
, and
Yang
,
X.
,
2017
, “
Experimental Investigation on Soft Galloping and Hard Galloping of Triangular Prisms
,”
Appl. Sci.
,
7
(
2
), p.
198
.
8.
Chen
,
W. L.
,
Wei
,
Y. H.
,
Ji
,
C. N.
, and
Zhao
,
Y. W.
,
2023
, “
Mass Ratio Effects on Flow-Induced Vibrations of an Equilateral Triangular Prism
,”
J. Fluids Struct.
,
116
, p.
103808
.
9.
Zhu
,
H.
, and
Gao
,
Y.
,
2018
, “
Hydrokinetic Energy Harvesting From Flow-Induced Vibration of a Circular Cylinder With Two Symmetrical Fin-Shaped Strips
,”
Energy
,
165
, pp.
1259
1281
.
10.
Zhang
,
D. H.
,
Yao
,
H.
,
Sui
,
Y.
,
Yao
,
Y.
, and
Li
,
W.
,
2022
, “
Influence of System Parameters on the Coupling Between Vortex Induced Vibration and Galloping
,”
Ocean Eng.
,
266
(
2
), p.
112857
.
11.
Bukka
,
S. R.
,
Magee
,
A. R.
, and
Jaiman
,
R. K.
,
2020
, “
Stability Analysis of Passive Suppression for Vortex-Induced Vibration
,”
J. Fluid Mech.
,
886
, pp.
A12
A12
.
12.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.
13.
Moss
,
C.
,
Maulik
,
R.
,
Moriarty
,
P.
, and
Iungo
,
G. V.
,
2023
, “
Predicting Wind Farm Operations With Machine Learning and the P2D-RANS Model: A Case Study for an AWAKEN Site
,”
Wind Energy
,
52
, p.
2046160
.
14.
Serpa
,
G. S.
,
Ricardo
,
Á
,
Gherhardt
,
R.
,
da Silva
,
M. M.
, and
de Oliveira
,
L. P.
,
2023
, “
Vibration-Based Multiphase-Flow Pattern Classification via Machine Learning Techniques
,”
Flow Meas. Instrum.
,
89
, p.
102290
.
15.
Mysorewala
,
M. F.
,
Cheded
,
L.
, and
Ali
,
I. M.
,
2020
, “
Leak Detection Using Flow-Induced Vibrations in Pressurized Wall-Mounted Water Pipelines
,”
IEEE Access
,
8
, pp.
8188673
188687
.
16.
Sambana
,
B.
,
Appala
,
N. P.
,
Jarabala
,
R.
, and
Narayana
,
V. N.
,
2023
, “
Performance Validation of Wind Turbines Using Machine Learning Methodologies
,”
Mater. Today: Proc.
,
80
(
3
), pp.
2845
2849
.
17.
Moreno
,
S. R.
,
Coelho
,
L. D. S.
,
Ayala
,
H. V. H.
, and
Mariani
,
V. C.
,
2020
, “
Wind Turbines Anomaly Detection Based on Power Curves and Ensemble Learning
,”
IET Renew. Power Gener.
,
14
(
19
), pp.
4086
4093
.
18.
Mulongo
,
J.
,
Atemkeng
,
M.
,
Ansah-Narh
,
T.
,
Rockefeller
,
R.
,
Nguegnang
,
G. M.
, and
Garuti
,
M. A.
,
2020
, “
Anomaly Detection in Power Generation Plants Using Machine Learning and Neural Networks
,”
Appl. Artif. Intell.
,
34
(
1
), pp.
64
79
.
19.
Ibrahim
,
M.
,
Alsheikh
,
A.
,
Awaysheh
,
F. M.
, and
Alshehri
,
M. D.
,
2022
, “
Machine Learning Schemes for Anomaly Detection in Solar Power Plants
,”
Energies
,
15
(
3
), pp.
1082
1082
.
20.
Sun
,
H.
,
Kim
,
E. S.
,
Bernitsas
,
M. M.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2016
, “
Effect of Mass-Ratio, Damping, and Stiffness on Optimal Hydrokinetic Energy Conversion of a Single, Rough Cylinder in Flow Induced Motions
,”
Renewable Energy
,
99
, pp.
936
959
.
21.
Bernitsas
,
M. M.
, and
Raghavan
,
K.
,
2005
, “Fluid Motion Energy Converter,” U.S. Patent.
22.
Bernitsas
,
M. M.
,
Kamaldev
,
R.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.
23.
Lv
,
Y. F.
,
Sun
,
L. P.
,
Bernitsas
,
M. M.
, and
Sun
,
H.
,
2021
, “
A Comprehensive Review of Nonlinear Oscillators in Hydrokinetic Energy Harnessing Using Flow-Induced Vibrations
,”
Renewable Sustainable Energy Rev.
,
150
, p.
111388
.
24.
Ding
,
L.
,
Zhang
,
L.
,
Bernitsas
,
M. M.
, and
Chang
,
C. C.
,
2016
, “
Numerical Simulation and Experimental Validation for Energy Harvesting of Single-Cylinder VIVACE Converter With Passive Turbulence Control
,”
Renewable Energy
,
85
, pp.
1246
1259
.
25.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Recherche Aerospatiale
,
1
, pp.
5
21
.
26.
Kinaci
,
K.
,
2016
, “
2-D Urans Simulations of Vortex Induced Vibrations of Circular Cylinder at Trsl3 Flow Regime
,”
J. Appl. Fluid Mech.
,
9
(
7
), pp.
2537
2544
.
27.
Zhang
,
D. H.
,
Sun
,
H.
,
Wang
,
W. H.
, and
Bernitsas
,
M. M.
,
2018
, “
Rigid Cylinder With Asymmetric Roughness in Flow Induced Vibrations
,”
Ocean Eng.
,
150
, pp.
363
376
.
28.
Andrić
,
F.
, and
Héberger
,
K.
,
2017
, “
How to Compare Separation Selectivity of High-Performance Liquid Chromatographic Columns Properly
,”
J. Chromatogr. A
,
1488
, pp.
45
56
.
29.
Yann
,
L.
,
Yoshua
,
B.
, and
Geoffrey
,
H.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
30.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1985
,
Learning Internal Representations by Error Propagation
,
California University San Diego La Jolla Institute for Cognitive Science
,
San Diego, CA
.
31.
Hinton
,
G. E.
, and
Salakhutdinov
,
R. R.
,
2006
, “
Reducing the Dimensionality of Data With Neural Networks
,”
Science
,
313
(
5786
), pp.
504
507
.
32.
Janiesch
,
C.
,
Zschech
,
P.
, and
Heinrich
,
K.
,
2021
, “
Machine Learning and Deep Learning
,”
Electron. Markets
,
31
(
3
), pp.
1
11
.
33.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.
You do not currently have access to this content.