Abstract

This paper gives an overview of the factors that affect the strength and structural design of advanced thin-walled marine structures with reduced plate thickness or alternative topologies to those used today in the marine industry. Due to production-induced initial deformations and resulting geometrical non-linearity, the classical division between primary, secondary, and tertiary responses becomes strongly coupled. Volume-averaged, non-linear response of structural element can be used to define the structural stress–strain relation that enables analysis at the next, larger, length scale. This, today’s standard homogenization process, needs to be complemented with localization, where the stresses are assessed at the details, such as welds for fatigue analysis. Due to this, the production-induced initial distortions need to be considered with high accuracy. Another key question is the length-scale interaction in terms of continuum description. Non-classical continuum mechanics are needed when consecutive scales are close. Strain-gradients are used to increase the accuracy of the kinematical description of beams, plates, and shells. The paper presents examples of stiffened and sandwich panels covering limit states such as fatigue, non-linear buckling, and fracture.

References

1.
Caldwell
,
J. B.
,
1965
, “
Ultimate Longitudinal Strength
,”
Trans. RINA
,
107
, pp.
411
430
.
2.
Faulkner
,
D.
,
1975
, “
A Review of Effective Plating for the Analysis of Stiffened Plating in Bending and Compression
,”
J. Ship Res.
,
19
(
1
), pp.
1
17
.
3.
Smith
,
C. S.
,
1977
, “
Influence of Local Compressive Failure on Ultimate Longitudinal Strength of a Ship’s Hull
,”
Proceedings of the 1st International Conference on Practical Design of Ships and Other Floating Structures
,
PRADS
,
Tokyo
,
Oct. 18–20
, pp.
73
79
.
4.
Dow
,
R. S.
,
Hugill
,
R. C.
,
Clark
,
J. D.
, and
Smith
,
C. S.
,
1981
, “
Evaluation of Ultimate Ship Hull Strength
,”
Extreme Loads Response Symposium
,
Arlington, VA
,
Oct. 19–20
,
SNAME
, pp.
133
148
.
5.
Guedes Soares
,
C.
, and
Søreide
,
T. H.
,
1983
, “
Behaviour and Design of Stiffened Plates Under Predominantly Compressive Loads
,”
Int. Shipbuild. Prog.
,
30
(
341
), pp.
13
27
. 10.3233/ISP-1983-3034103
6.
Gordo
,
J. M.
, and
Guedes Soares
,
C.
,
1996
, “
Approximate Methods to Evaluate the Hull Girder Collapse Strength
,”
Mar. Struct.
,
9
(
3
), pp.
449
470
. 10.1016/0951-8339(95)00030-5
7.
Paik
,
J. K.
,
Thayamballi
,
A. K.
, and
Jung
,
S. C.
,
1996
, “
Ultimate Strength of Ship Hulls Under Combined Vertical Bending, Horizontal Bending, and Shearing Forces
,”
Trans. SNAME
,
104
, pp.
31
59
.
8.
Sadovský
,
Z.
,
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2006
, “
Degradation of the Compressive Strength of Square Plates Due to Initial Deflection
,”
J. Constr. Steel Res.
,
43
(
1
), pp.
369
377
. 10.1016/j.jcsr.2005.07.013
9.
Paik
,
J. K.
,
2008
, “
Some Recent Advances in the Concepts of Plate-Effectiveness Evaluation
,”
Thin Walled Struct.
,
46
(
7–9
), pp.
1035
1046
. 10.1016/j.tws.2008.01.022
10.
Xu
,
M. C.
, and
Guedes Soares
,
C.
,
2012
, “
Assessment of the Ultimate Strength of Narrow Stiffened Panel Test Specimens
,”
Thin Walled Struct.
,
55
(
1
), pp.
11
21
. 10.1016/j.tws.2012.02.006
11.
Xu
,
M. C.
, and
Guedes Soares
,
C.
,
2013
, “
Comparisons of Calculations With Experiments on the Ultimate Strength of Wide Stiffened Panels
,”
Mar. Struct.
,
31
(
1
), pp.
82
101
. 10.1016/j.marstruc.2013.01.003
12.
Geers
,
M. G. D.
,
Kouznetsova
,
V. G.
, and
Brekelmans
,
W. A. M.
,
2010
, “
Multi-Scale Computational Homogenization: Trends and Challenges
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2175
2182
. 10.1016/j.cam.2009.08.077
13.
Miehe
,
C.
,
Schröder
,
J.
, and
Becker
,
M.
,
2002
, “
Computational Homogenization Analysis in Finite Elasticity: Material and Structural Instabilities on the Micro- and Macro-Scales of Periodic Composites and Their Interaction
,”
Comput. Meth. Appl. Mech. Eng.
,
191
(
44
), pp.
4971
5005
. 10.1016/S0045-7825(02)00391-2
14.
Romanoff
,
J.
, and
Varsta
,
P.
,
2007
, “
Bending Response of Web-Core Sandwich Plates
,”
Compos. Struct.
,
81
(
2
), pp.
292
302
. 10.1016/j.compstruct.2006.08.021
15.
Mindlin
,
R. D.
,
1963
,
Micro-Structure in Linear Elasticity
,
Department of Mechanical Engineering, University of British Columbia, Columbia University
,
New York
.
16.
Eringen
,
A. C.
,
1972
, “
Nonlocal Polar Elastic Continua
,”
Int. J. Eng. Sci.
,
10
(
1
), pp.
1
16
. 10.1016/0020-7225(72)90070-5
17.
Reddy
,
J. N.
,
2011
, “
Microstructure-Dependent Couple Stress Theories of Functionally Graded Beams
,”
J. Mech. Phys. Solids
,
59
(
11
), pp.
2382
2399
. 10.1016/j.jmps.2011.06.008
18.
Romanoff
,
J.
, and
Reddy
,
J. N.
,
2014
, “
Experimental Validation of the Modified Couple Stress Timoshenko Beam Theory for Web-Core Sandwich Panels
,”
Compos. Struct.
,
111
(
1
), pp.
130
137
. 10.1016/j.compstruct.2013.11.029
19.
Romanoff
,
J.
,
Reddy
,
J. N.
, and
Jelovica
,
J.
,
2016
, “
Using Non-Local Timoshenko Beam Theories for Prediction of Micro- and Macro-Structural Responses
,”
Compos. Struct.
,
156
(
1
), pp.
410
420
. 10.1016/j.compstruct.2015.07.010
20.
Romanoff
,
J.
,
Jelovica
,
J.
,
Avi
,
E.
,
Reinaldo Goncalves
,
B.
,
Körgesaar
,
M.
,
Raikunen
,
J.
,
Remes
,
H.
,
Niemelä
,
A.
,
Reddy
,
J. N.
, and
Varsta
,
P.
,
2016
, “
Use of a Equivalent Single Layer Plate Theory in Ship Structural Design
,”
Proceedings of PRADS2016
,
Copenhagen, Denmark
,
Sept. 4–8
, pp.
1
8
.
21.
Remes
,
H.
,
Romanoff
,
J.
,
Lillemäe
,
I.
,
Frank
,
D.
,
Liinalampi
,
S.
,
Lehto
,
P.
, and
Varsta
,
P.
,
2017
, “
Factors Affecting the Fatigue Strength of Thin-Plates in Large Structures
,”
Int. J. Fatigue
,
101
(
2
), pp.
397
407
. 10.1016/j.ijfatigue.2016.11.019
22.
Eggert
,
L.
,
Fricke
,
W.
, and
Paetzold
,
H.
,
2012
, “
Fatigue Strength of Thin-Plated Block Joints With Typical Shipbuilding Imperfections
,”
Weld. World.
,
56
(
11–12
), pp.
119
128
. 10.1007/BF03321402
23.
Lillemäe
,
I.
,
Liinalampi
,
S.
,
Remes
,
H.
,
Itävuo
,
A.
, and
Niemelä
,
A.
,
2017
, “
Fatigue Strength of Thin Laser-Hybrid Welded Full-Scale Deck Structure
,”
Int. J. Fatigue
,
95
(
1
), pp.
282
292
. 10.1016/j.ijfatigue.2016.11.012
24.
Ehlers
,
S.
, and
Varsta
,
P.
,
2009
, “
Strain and Stress Relation for Non-Linear Finite Element Simulations
,”
Thin Walled Struct.
,
47
(
11
), pp.
1203
1217
. 10.1016/j.tws.2009.04.005
25.
Körgesaar
,
M.
, and
Romanoff
,
J.
,
2013
, “
Influence of Softening on Fracture Propagation in Large-Scale Shell Structures
,”
Int. J. Solids Struct.
,
50
(
24
), pp.
3911
3921
. 10.1016/j.ijsolstr.2013.07.027
26.
Hogström
,
P.
, and
Ringsberg
,
J. W.
,
2012
, “
An Extensive Study of a Ship's Survivability After Collision—A Parameter Study of Material Characteristics, Non-Linear FEA and Damage Stability Analyses
,”
Mar. Struct.
,
27
(
1
), pp.
1
28
. 10.1016/j.marstruc.2012.03.001
27.
Ehlers
,
S.
,
2010
, “
Strain and Stress Relation Until Fracture for Finite Element Simulations of a Thin Circular Plate
,”
Thin Walled Struct.
,
48
(
1
), pp.
1
8
. 10.1016/j.tws.2009.08.004
28.
Körgesaar
,
M.
,
Remes
,
H.
, and
Romanoff
,
J.
,
2014
, “
Size Dependent Response of Large Shell Elements Under In-Plane Tensile Loading
,”
Int. J. Solids Struct.
,
51
(
21–22
), pp.
3752
3761
. 10.1016/j.ijsolstr.2014.07.012
29.
Körgesaar
,
M.
,
Reinaldo Goncalves
,
B.
,
Romanoff
,
J.
, and
Remes
,
H.
,
2016
, “
Behaviour of Orthotropic Web-Core Steel Sandwich Panels Under Multi-Axial Tension
,”
Int. J. Mech. Sci.
,
115–116
(
1
), pp.
428
437
. 10.1016/j.ijmecsci.2016.07.021
30.
Reinaldo Goncalves
,
B.
,
Jelovica
,
J.
, and
Romanoff
,
J.
,
2016
, “
A Homogenization Method for Geometric Nonlinear Analysis of Sandwich Structures With Initial Imperfections
,”
Int. J. Solids Struct.
,
87
(
1
), pp.
194
205
. 10.1016/j.ijsolstr.2016.02.009
31.
Metsälä
,
M.
,
2016
, “
Geometrically Nonlinear Bending Response of Steel Sandwich Box Girder Using Equivalent Single Layer Theory
,”
M.Sc. thesis
,
Aalto University, School of Engineering,
Espoo
.
32.
Dowling
,
P. J.
,
Chatterjee
,
S.
,
Frieze
,
P.
, and
Moolani
,
F. M.
,
1973
, “
Experimental and Predicted Collapse Behaviour of Rectangular Steel box Girders
,”
International Conference on Steel Box Girder Bridges
,
London
,
Feb. 13–14
, pp.
77
94
.
33.
Gordo
,
J. M.
, and
Guedes Soares
,
C.
,
2004
, “
Experimental Evaluation of the Ultimate Bending Moment of a Box Girder
,”
Mar. Syst. Offshore Technol.
,
1
(
1
), pp.
33
46
. 10.1007/BF03449192
34.
Gordo
,
J. M.
, and
Guedes Soares
,
C.
,
2009
, “
Tests on Ultimate Strength of Hull Box Girders Made of High Tensile Steel
,”
Mar. Struct.
,
22
(
4
), pp.
770
790
. 10.1016/j.marstruc.2009.07.002
35.
Gordo
,
J. M.
, and
Guedes Soares
,
C.
,
2015
, “
Experimental Evaluation of the Ultimate Bending Moment of a Slender Thin-Walled Box Girder
,”
J. Offshore Mech. Arct. Eng.
,
137
(
2
), p.
021604
. 10.1115/1.4029536
36.
Chakarov
,
K.
,
Garbatov
,
Y.
, and
Guedes Soares
,
C.
,
2008
, “
Fatigue Analysis of Ship Deck Structure Accounting for Imperfections
,”
Int. J. Fatigue
,
30
(
10–11
), pp.
1881
1897
. 10.1016/j.ijfatigue.2008.01.015
37.
Frank
,
D.
,
Romanoff
,
J.
, and
Remes
,
H.
,
2013
, “
Fatigue Strength Assessment of Laser Stake-Welded Web-Core Steel Sandwich Panels
,”
Fatigue Fract. Eng. Mater. Struct.
,
36
(
8
), pp.
724
737
. 10.1111/ffe.12038
38.
Fricke
,
W.
, and
Feltz
,
O.
,
2013
, “
Factors Between Small-Scale Specimens and Large Components on the Fatigue Strength of Thin-Plated Block Joints in Shipbuilding
,”
Fatigue Fract. Eng. Mater. Struct.
,
36
(
12
), pp.
1223
1231
. 10.1111/ffe.12058
39.
Fricke
,
W.
,
Remes
,
H.
,
Feltz
,
O.
,
Lillemäe
,
I.
,
Tchuindjang
,
D.
,
Reinert
,
T.
,
Nevierov
,
A.
,
Sichermann
,
W.
,
Brinkmann
,
M.
,
Kontkanen
,
T.
,
Bohlmann
,
B.
, and
Molter
,
L.
,
2015
, “
Fatigue Strength of Laser-Welded Thin-Plate Ship Structures Based on Nominal and Structural Hot-Spot Stress Approach
,”
Ships Offshore Struct.
,
10
(
1
), pp.
39
44
. 10.1080/17445302.2013.850208
40.
Hashemzadeh
,
M.
,
Garbatov
,
Y.
, and
Guedes Soares
,
C.
,
2017
, “
Analytically Based Equations for Distortion and Residual Stress Estimations of Thin Butt-Welded Plates
,”
Eng. Struct.
,
137
(
1
), pp.
115
124
. 10.1016/j.engstruct.2017.01.041
41.
Lillemäe-Avi
,
I.
,
Remes
,
H.
,
Dong
,
Y.
,
Garbatov
,
Y.
,
Quéméner
,
Y.
,
Eggert
,
L.
,
Sheng
,
Q.
, and
Yue
,
J.
,
2017
, “
Benchmark Study on Considering Welding-Induced Distortion in Structural Stress Analysis of Thin-Plate Structures
,”
Proceedings of MARSTRUCT 2017—Progress in the Analysis and Design of Marine Structures
,
Lisbon, Portugal
,
May 8–10
,
CRC Press
,
London
, pp.
387
394
.
42.
Lillemäe
,
I.
,
Lammi
,
H.
,
Molter
,
L.
, and
Remes
,
H.
,
2012
, “
Fatigue Strength of Welded Butt Joints in Thin and Slender Plates
,”
Int. J. Fatigue
,
44
(
1
), pp.
98
106
. 10.1016/j.ijfatigue.2012.05.009
43.
Roland
,
F.
, and
Reinert
,
T.
,
2000
, “
Laser Welded Sandwich Panels for the Shipbuilding Industry
,”
Lightweight Construction—Latest Developments
,
London
,
Feb. 24–25
,
SW1
, pp.
1
12
.
44.
Marsico
,
T. A.
,
Denney
,
P.
, and
Furio
,
A.
,
1993
, “
Laser-Welding of Lightweight Structural Steel Panels
,”
Proceedings of Laser Materials Processing Conference
,
Orlando, FL
,
Oct. 24–28
,
ICALEO
, pp.
444
451
.
45.
Romanoff
,
J.
,
Ehlers
,
S.
, and
Remes
,
H.
,
2016
, “
Influence of Nonsymmetric Steel Sandwich Panel Joints on Response and Fatigue Strength of Passenger Ship Deck Structures
,”
J. Ship. Prod. Des.
,
32
(
1
), pp.
1
9
. 10.5957/JSPD.32.3.150018
46.
Fricke
,
W.
,
2003
, “
Review: Fatigue of Welded Joints: State of Development
,”
Mar. Struct.
,
16
(
3
), pp.
185
200
. 10.1016/S0951-8339(02)00075-8
47.
Byklum
,
E.
, and
Amdahl
,
J.
,
2002
, “
A Simplified Method for Elastic Large Deflection Analysis of Plates and Stiffened Panels due to Local Buckling
,”
Thin Walled Struct.
,
40
(
11
), pp.
925
953
. 10.1016/S0263-8231(02)00042-3
48.
Byklum
,
E.
,
Steen
,
E.
, and
Amdahl
,
J.
,
2004
, “
A Semi-Analytical Model for Global Buckling and Postbuckling Analysis of Stiffened Panels
,”
Thin Walled Struct.
,
42
(
5
), pp.
701
717
. 10.1016/j.tws.2003.12.006
49.
Matouš
,
K.
,
Geers
,
M. G. D.
,
Kouznetsova
,
V. G.
, and
Gillmann
,
A.
,
2017
, “
A Review of Predictive Nonlinear Theories for Multiscale Modeling of Heterogeneous Materials
,”
J. Comput. Phys.
,
330
(
1
), pp.
192
220
. 10.1016/j.jcp.2016.10.070
50.
Srinivasa
,
A. R.
, and
Reddy
,
J. N.
,
2017
, “
An Overview of Theories of Continuum Mechanics With Nonlocal Elastic Response and a General Framework for Conservative and Dissipative Systems
,”
Appl. Mech. Rev.
,
69
(
3
), p.
030802
. 10.1115/1.4036723
51.
Reinaldo Goncalves
,
R.
, and
Romanoff
,
J.
,
2018
, “
Size-Dependent Modelling of Elastic Sandwich Beams With Prismatic Cores
,”
Solids Struct.
,
136–137
(
1
), pp.
28
37
. 10.1016/j.ijsolstr.2017.12.001
52.
Karttunen
,
A. T.
,
Reddy
,
J. N.
, and
Romanoff
,
J.
,
2018
, “
Micropolar Modeling Approach for Periodic Sandwich Beams
,”
Compos. Struct.
,
185
(
1
), pp.
656
664
. 10.1016/j.compstruct.2017.11.064
53.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids.
,
41
(
12
), pp.
1825
1857
. 10.1016/0022-5096(93)90072-N
54.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain-Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
. 10.1016/0956-7151(94)90502-9
55.
Peerlings
,
R. H. J.
,
Geers
,
M. G. D.
,
de Borst
,
R.
, and
Brekelmans
,
W. A. M.
,
2001
, “
A Critical Comparison of Non-Local and Gradient-Enhanced Softening Continua
,”
Solids Struct.
,
38
(
44–45
), pp.
7723
7746
. 10.1016/S0020-7683(01)00087-7
56.
Bažant
,
Z. P.
, and
Jirásek
,
M.
,
2002
, “
Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress
,”
J. Eng. Mech.
,
128
(
11
), pp.
1119
1149
. 10.1061/(ASCE)0733-9399(2002)128:11(1119)
You do not currently have access to this content.