The effect of the coefficient of kurtosis, as a measure of third order nonlinearity, on the distribution of wave height maxima has been investigated. Measurements of the surface elevation during a storm at the North Alwyn platform in the North Sea have been used. The mean number of waves in the series is around 100. The maximum wave statistics have been compared with nonlinear theoretical distributions. It was found that the empirical probability densities of the maximum wave heights describe qualitatively the shift of the distribution modes toward higher values. The tendency for the peak of distribution to diminish with an increase in the coefficient of kurtosis up to 0.6 is also clearly seen. However, the empirical peak remains higher than the theoretically predicted one. The exceedance probability of the maximum wave heights was also estimated from the data and was compared with the theory. For the highest coefficients of kurtosis, estimated at nearly 0.6, the theoretical distribution approximates very well the empirical data. For lower coefficients of kurtosis, the theory tends to overestimate the exceedance probability of the maximum wave heights.

1.
Haver
,
S.
, and
Andersen
,
O.
, 2000, “
Freak Waves: Rare Realizations of a Typical Population or Typical Realizations of a Rare Population?
,”
Proceedings of the Tenth International Offshore and Polar Engineering Conference (ISOPE 2000)
, Seattle, WA, pp.
123
130
.
2.
Stansell
,
P.
,
Wolfram
,
J.
, and
Zachary
,
S.
, 2003, “
Horizontal Asymmetry and Steepness Distributions for Wind-Driven Ocean Waves
,”
Appl. Ocean. Res.
0141-1187,
25
, pp.
137
155
.
3.
Guedes Soares
,
C.
,
Cherneva
,
Z.
, and
Antão
,
E. M.
, 2003, “
Characteristics of Abnormal Waves in North Sea Storm Sea States
,”
Appl. Ocean. Res.
0141-1187,
25
, pp.
337
344
.
4.
Bitner-Gregersen
,
E.
, and
Magnusson
,
A.
, 2004, “
Extreme Events in Field Data and in a Second Order Model
,”
Proceedings of Rogue Waves 2004
, Brest, France, pp.
22
23
.
5.
Guedes Soares
,
C.
,
Cherneva
,
Z.
, and
Antao
,
E.
, 2004, “
Abnormal Waves During the Hurricane Camille
,”
J. Geophys. Res.
0148-0227,
109
, p.
C08008
.
6.
Yasuda
,
T.
, and
Mori
,
N.
, 1997, “
Occurrence Properties of Giant Freak Waves in the Sea Area Around Japan
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
123
, pp.
209
213
.
7.
Yasuda
,
T.
,
Mori
,
N.
, and
Nakayama
,
S.
, 1997, “
Characteristics of Giant Freak Waves Observed in the Sea of Japan
,”
Proceedings of Waves ‘97
, Virginia, VA, pp.
482
495
.
8.
Tomita
,
H.
, and
Kawamura
,
T.
, 2000, “
Statistical Analysis and Inference From the In-Situ Data of the Sea of Japan With Reference to Abnormal and/or Freak Waves
,”
Proceedings of the Tenth International Offshore and Polar Engineering Conference (ISOPE)
, Seattle, WA, pp.
116
122
.
9.
Lavrenov
,
I.
, 1998, “
The Wave Energy Concentration at the Agulhas Current of South Africa
,”
Natural Hazards
0921-030X,
17
, pp.
117
127
.
10.
White
,
B.
, and
Fornberg
,
B.
, 1998, “
On the Chance of Freak Waves at Sea
,”
J. Fluid Mech.
0022-1120,
355
, pp.
113
138
.
11.
Pelinovsky
,
E.
, and
Kharif
,
C.
, 2000, “
Simplified Model of the Freak Wave Formation From the Random Wave Field
,”
Proceedings of the 15th International Workshop on Water Waves and Floating Bodies
, Israel, pp.
142
145
.
12.
Osborne
,
A.
, 2000, “
Nonlinear Instability Analysis of Deep Water Wave Trains: Computation of Maximum Heights of Rogue Waves
,”
Proceedings of the 19th International Offshore Mechanics and Arctic Engineering Conference (OMAE)
, ASME Paper No. OSU OFT-4033.
13.
Onorato
,
M.
,
Osborne
,
A.
,
Serio
,
M.
, and
Bertone
,
S.
, 2001, “
Freak Waves in Random Oceanic Sea States
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
5831
5834
.
14.
Janssen
,
P.
, 2003, “
Nonlinear Four-Wave Interactions and Freak Waves
,”
J. Phys. Oceanogr.
1520-0485,
33
, pp.
863
884
.
15.
Annenkov
,
S.
, and
Shrira
,
V.
, 2006, “
Role of Non-Resonant Interactions in the Evolution of Nonlinear Random Water Wave Fields
,”
J. Fluid Mech.
0022-1120,
561
, pp.
181
207
.
16.
Onorato
,
M.
,
Osborne
,
A.
,
Serio
,
M.
,
Cavaleri
,
L.
,
Brandini
,
C.
, and
Stansberg
,
C.
, 2006, “
Extreme Waves, Modulational Instability and Second Order Theory: Wave Flume Experiments on Irregular Waves
,”
Eur. J. Mech. B/Fluids
0997-7546,
25
, pp.
586
601
.
17.
Tayfun
,
M.
, and
Lo
,
J. -M.
, 1990, “
Non-Linear Effects on Wave Envelope and Phase
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
116
(
1
), pp.
79
100
.
18.
Mori
,
N.
, and
Janssen
,
P.
, 2006, “
On Kurtosis and Occurrence Probability of Freak Waves
,”
J. Phys. Oceanogr.
1520-0485,
36
, pp.
1471
1483
.
19.
Mori
,
N.
,
Yasuda
,
T.
, and
Kawaguchi
,
K.
, 1997, “
Breaking Effects on Wave Statistics for Deep-Water Random Wave Train
,”
Waves ‘97
, Virginia, VA, pp.
316
328
.
20.
Mori
,
N.
,
Onorato
,
M.
,
Janssen
,
P. A. E. M.
,
Osborne
,
A. R.
, and
Serio
,
M.
, 2007, “
On the Extreme Statistics of Long-Crested Deep Water Waves: Theory and Experiments
,”
J. Geophys. Res.
0148-0227,
112
, p.
C09011
.
21.
Yasuda
,
T.
, and
Mori
,
N.
, 1994, “
High Order Nonlinear Effects on Deep-Water Random Wave Trains
,”
Proceedings of the International Symposium on Waves—Physical and Numerical Modeling
, Vancouver, Vol.
2
, pp.
823
832
.
22.
Toffoli
,
A.
,
Onorato
,
M.
,
Bitner-Gregersen
,
E.
,
Osborne
,
A.
, and
Babanin
,
A.
, 2008, “
Surface Gravity Waves From Direct Numerical Simulations of the Euler Equations: A Comparison With Second-Order Theory
,”
Ocean Eng.
0029-8018,
35
, pp.
367
379
.
23.
Onorato
,
M.
,
Osborne
,
A.
,
Serio
,
M.
,
Brandini
,
M.
, and
Stansberg
,
C.
, 2004, “
Observation of Strongly Non-Gaussian Statistics for Random Sea Surface Gravity Waves in Wave Flume Experiments
,”
Phys. Rev. E
1063-651X,
70
(
6
), p.
067302
.
24.
Onorato
,
M.
,
Osborne
,
A.
, and
Serio
,
M.
, 2005, “
On Deviation From Gaussian Statistics for Surface Gravity Waves
,”
Proceedings of the 14th Áha Hulikoá Hawaiian Winter Workshop on Rogue Waves
.
25.
Onorato
,
M.
,
Osborne
,
A.
,
Serio
,
M.
, and
Cavaleri
,
L.
, 2005, “
Modulation Instability and Non-Gaussian Statistics in Experimental Random Water-Wave Trains
,”
Phys. Fluids
1070-6631,
17
, p.
078101
.
26.
Petrova
,
P.
,
Cherneva
,
Z.
, and
Guedes Soares
,
C.
, 2007, “
On the Adequacy of Second-Order Models to Predict Abnormal Waves
,”
Ocean Eng.
0029-8018,
34
, pp.
956
961
.
27.
Cherneva
,
Z.
, and
Guedes Soares
,
C.
, 2007, “
Estimation of the Bispectra and Phase Distribution of Storm Sea States With Abnormal Waves
,”
Ocean Eng.
0029-8018,
34
, pp.
2009
2020
.
28.
Tayfun
,
T.
, and
Fedele
,
F.
, 2007, “
Wave-Height Distributions and Nonlinear Effects
,”
Ocean Eng.
0029-8018,
34
, pp.
1631
1649
.
29.
Longuet-Higgins
,
M.
, 1963, “
The Effect of Nonlinearities on Statistical Distributions in the Theory of Sea Waves
,”
J. Fluid Mech.
0022-1120,
17
, pp.
459
480
.
30.
Srokosz
,
M.
, and
Longuet-Higgins
,
M.
, 1986, “
On the Skewness of Sea-Surface Elevation
,”
J. Fluid Mech.
0022-1120,
164
, pp.
487
497
.
31.
Longuet-Higgins
,
M. S.
, 1980, “
On the Distribution of the Heights of the Sea Waves: Some Effects of Nonlinearity and Finite Band Width
,”
J. Geophys. Res.
0148-0227,
85
(
C3
), pp.
1519
1523
.
32.
Zakharov
,
V.
, 1999, “
Statistical Theory of Gravity and Capillary Waves on the Surface of a Finite-Depth Fluid
,”
Eur. J. Mech. B/Fluids
0997-7546,
18
(
3
), pp.
327
344
.
33.
Benjamin
,
T. B.
, and
Feir
,
J. E.
, 1967, “
The Disintegration of Wave Trains on Deep Water Part I. Theory
,”
J. Fluid Mech.
0022-1120,
27
, pp.
417
430
.
34.
Onorato
,
M.
,
Osborne
,
A.
,
Serio
,
M.
,
Resio
,
D.
,
Pushkarev
,
A.
,
Zakharov
,
V.
, and
Brandini
,
C.
, 2002, “
Freely Decaying Weak Turbulence for Sea Surface Gravity Waves
,”
Phys. Rev. Lett.
0031-9007,
89
, p.
144501
.
You do not currently have access to this content.